

The Scottish Society of the Jristory of Medicine

The H.P. Tait Collection
Be 1.9

Z O O N O M I A;

OR,

THE L A W S

OF.

ORGANIC LIFE.

IN FOUR VOLUMES.

By ERASMUS D.1RWIN, M.D.F.R.S.

author of the botanic garden.

Principiò-colum, ac terras, campofque liquentes,
Lucentemque globum lunæ, titaniaque aftra,
Spiritus intùs alit, totamque infufa per artus
Mens agitat molem, et magno fe corpore mifcet.
Virg. Ær. vi.
Earth, on whofe lap a thoufand nations tread,
And Ocean, brooding his prolific bed, Night's changeful orb, blue pole, and filvery zones,
Where other worlds encircle other funs,
One mind inhabits, one diffufive Soul
Wields the large limbs, and mingles with the whole.

> V OL. II.

THE THIRD EDITION, CORRECTED.
:

PRINTED FOR J. JUGNSON, IN ST: PAUL'S CHURCH-YARD,
1801.
T. Eerfley, Frimer, Dilt Ciwh, Fian Sirest.

Digitized by the Internet Archive in 2016

CONTENTS.

Seot. XXX. The Paralyfis of the Liver and Kidneys.
XXXI. Of temperaments.
XXXII. Difeafes of Trritation.
XXXIII. - of Senfation.
XXXIV. - of Volition.
XXXV. of Affociation.
XXXVI. The Periods of Difeafes.
XXXVII. Of Digeftion, Secretion, Nutrition.
XXXVIII. Of the Oxygenation of the Blood in the Lungs and Placenta.
XXXXIX. Of Generation.
XL. Of Ocular Spectra.

P A R T III.
Articles of the máteria medica.
Art. I. Nutrientia.
II. Incitantia.
III. Secernentia.
IV. Sorbentia.
V. Invertentia.
VI. Revertentia.
VII. Torpentia.

ZOONOMIA.

S E C T. XXX.

PARALYSIS OE THE LIVER AND KIDIEYS.

1. Bile-dults lefs irritable after baving been fimulated much: 2. Faundice from paraly is of the bile-duits cured by eleciric pooks. 3. From bile-fones: Experiments on bille-fones. Oil vomit 4. Pally of the liver, two cafes. 5. Scir: viofity of the liver. 6. Large livers of geefe. II. Paraly/is of the kidncys. III. Story of Prometbeis.
2. From. the ingurgitation of fpirituous liquors into the fomach and duodenum, the termination of the common bile-duct in that bowel becomes frimulated into unnatural action, and a grenter quantity of bile is produced from all the fecretory veffels of the liver, by the affociation of their motions with thofe of their excretory ducts; as has been explained in Section XXIV. and XXV. but as all parts of the body, that have been affected with ftronger ftimuli for any length of time, become lefs fufceptible of motion. from their natural weaker ftimuli, it follows, that the motions of the fecretory veffels, and in YOL.II.

B
confequence
confequence the fecretion of bile, is lefs than is natural during the intervals of fobricty. 2. If this ingurgitation of fipirituous liquors has been daily contisued in confiderable quantity, and is then fuddenly intermitted, a languor or paralyfis of the common bile-duct-is induced; the bile is prevented from being pourcd into the inteftincs; and as the bilious abforbents are ftimulated into ftronger action by its accumulation, and by the acrimony or vifcidity, which it acquircs by delay, it is abforbed, and carried to the receptacle of the chyle; or otherwife the fecretory veffels of the liver, by the above-mentioned ftimulus, invert 1heir motions, and regurgitate their contents into the blood, as fometimes happens to the tears in the lachrymal fack, fee Sce. XXIV.'2. 7. and one kind of jaundice is brought on.

There is reafon to believe, that the bile is moft frequently returncd into the circulation by the inverted motions of thefe hepatie glands, for the bile docs not feem liable to be abforbed by the lymphatics, for it 'oaks through the gall-ducts, and is frequently found in the cellular membrane. This kind of jaundice is not generally attended with pain, ncither at the extremity of the bileduct, where it enters the duodenum, nor on the region of the gall-bladdcr.

Mr. S. a gentleman between forty and fifty years of age, had had the jaundice about fix wecks, without pain, ficknefs, or fever; and had taken
taken cmetics, cathartics, mercurials, bittcrs, chalybcates, effential oil, and æther, without apparent advantage. On a fuppofition that the obftruction of the bilc might be owing to the paralyfis, or torpid action of the common bilcduct, and the ftimulants taken into the fomach feeming to have no effect, I directed half a fcore finart electric fhocks from a coated bottle, which held about a quart, to be paffed through the liver, and along the courle of the common gallduct, as near as could be gueffed, and on that very day the ftools became yellow; he continued the electric fhocks a few days morc, and his fkin gradually became clear.
3. The bilious vomiting and purging, that affects fome people by intervals of a few weeks, is a lefs degree of this difeafe; the bile-duct is lefs irritable than natural, and hence the bile becomes accumulated in the 'gall-bladdcr, and hepatic ducts, till by its quantity, acrimony or vifcidity, a greater degree of irritation is produced, and it is fuddenly evacuated, or lafily from the abforption of the more-liquid parts of the bile, the remainder becomes infififfated, and chryftallizes into maffes too large to pafs, and forms another kind of jaundice, where the bileduct is not quite paralytic, or has regained its irritability.

This difeafe is attended with much pain,which at firft is felt at the pit of the fiomach, exaclly
in the centre of the body, where the bile-duet enters the duodcnum; afterwards, when the fize of the bile-ftones incrcafe, it is alfo felt on the right fide, where the gall-bladder is fituated. The formor pain at the pit of the fomach recurs by intervals, as the bile-ftone is pufhed againft the neck of the duct; like the paroxyfms of the ftonc in the urinary bladder, the other is a more dull and confant pain.

Wherc thefe bile-ftoncs are too large to pafs, and the bile-ducts pofers their fenfibility, this becomes a very painful and hopelefs difeafe. I made the following experinents with $:$ view to their chemical folution.

Some fragments of the fame bile-flone were put into the weak fpirit of marine falt, which is fold in the fhops; and into folution of mild alcali; and into a folution of cauftic alcals; and into oil of turpentine; without their being diffolved. All thefe mixtures were after fome time put into a heat of boiling water, and then the oil of turpentinc diffolved its fragments of bile-ftone, but no alteration was produced upon thofe in the other liquids except fome change of their colour.

Some fragments of the fame bile-ftone were put into vitriolic æther, and were quiekly diffolved without additional heat. Might not æther mixed with yolk of egg or with honcy be given advantageoufly in bilious concretions?

I have in two infances feen fiom thirty to fifty bile-fiones come away by ftool, about the fize of large peas, after having given fix grains of calomel in the evening, and four ounces of oil of almonds or olives on the fucceeding morning. I have alfo given half a pint of good olive or almond oil as an emetic during the painful fit, and repeated it in half an hour, if the firft did not operatc, with frequent good effect.
4. Another difeafe of the liver, which I have feveral times obferved, confifts in the inability or paralyfis of the fecretory veffels. This difeafe has generally the fame caufe as the prèceding one, the too frequent potation of fpirituous liquors, or the too fudden omiffion of them, after the habit is confifed; and is greater or lefs in proportion, as the whole or a part of the liver is affected, and as the inability or paralyfis is more or lefs completc.

This palfy of the liver is known from thefe fymptoms, the patients have gencrally, paffed the meridian of, life, have drunk fermented liquors daily, but perhaps not been opprobrious drunkards; they lofe their appetite, then their flefh and ftrength diminifh in confequence, there appears no bile in their ftools, nor in their urine, nor is any hardnefs or fwelling perceptible in the region of the liver. But what is peculiar to this difeafe, and diftinguifhes it from all others at the firft glance of the cye, is the bombycingus colour of
the fkin, which, like that of full-grown filkworms, has a degice of tranfparency with a yellow tint not greater than is natural to the ferim of the blood.

Mr. C. and Mr. B. both very ftrong men, bctween fifty and fixty years of age, who had drunk alc at their moals inftead of fmall becr, but were not reputed hard-drinkers, fuddenly became weak, loft their appetite, flefh and ftrength, with all the fymptoms above enumerated, and died in about two months from the beginning of their malady. Mr. C. became anafarcous a few days beforc his death, and Mr. B. had frequent and great hæmorrhages from an iffue, and fomc parts of his mouth, a fciv days beforc his death. In both thefe cafes calomel, bitters, and chalybeates werc repeatedly ufed without cffect.

Onc of the patients defcribed above, Mr. C. was by trade a plumber; both of them could digeft no food, and died apparently for want of blood. Might not the transfufion of blood be ufcd in thefe cafes with advantage ?
5. When the paralyfis of the hepatic glands is lefs complete, or lefs univerfal, a fcirrhofity of fome part of the liver is induced; for the focretory veffels retaining fome of their living power takc up a fluid from the circulation, without being fufficiently irritable to carry it forwards to their excretory ducts; hence the body, or rcceptacle of each gland, becomes inflated, and
this diftention increafes, till by its very great ftimulus inflammation is produced, or till thofe parts of the vifcus become totally paralytic. This difeafe is cuftinguifhable from the foregoing by the palpable hardncfs or largenefs of the liver; and as the hepatic glands are not totally paralytic, or the whole liver not affected, fome bile continues to be made. The inflammations of this vifcus, confequent to the feirrhofity of it, bclong to the difeafes of the fenfitive motions, and will be treated of hercafter.
6. The ancients arc faid to have poffeffed an art of incrcafing the livers of geefe to a fize greater than the remainder of the goofe. Martial. 1. 13. epig. 53. -This is faid to have been done by fat and figs. Horace. 1. 2. fat. 8.-Juvenal fets thefe large livers before an epicure as a great rarity. Sat. 5 1.114; and Pcrfus, fat. 6. 1.71. Pliny fays thefe large goofe-livers were foaked in mulled milk, that is, I fuppofe, milk mixed with honey and wine; and adds, "that it is uncertain whether Scipio Mctellus, of confular dignity, or. M. Seftius, a Roman knight, was the great difcoverer of this excellent difh." A modern traycller, [belicve Mr. Brydone, afferts that the art of enlarging the livers of gecfe ftill cxifis in Sicily; and it is to be lamentcd that he did not import it into his native country, as fome method of affecting the human liver might perhaps have been collected from it :
befide:
befides the honour he might have acquired in improving our giblet pics.

Our wifer caupones, I am told, know how to fatten their fowls, as well as their gecefe, for the London markets, by mixing gin inftead of figs and fat with their food; by which they are faid to become nleepy, and to fatten apace, and probably acquire enlarged livers; as the fwine are afferted to do, which are fed on the fediments of barrels in the diftilleries; and which fo frequently obtains in thofe, who ingurgitate much ale, or wine, or drams.
II. The irritative difeafes of the kidneys, pancreas, fpleen, and other glands, are analogous ta thofe of the liver above defcribed, differing only in the confequences attending their inability to action. For inftance, when the fecretory veffels of the kidneys become difobcdient to the ftimulus of the paffing current of blood, no urine is feparated or produced by them; their excretory mouths become filled with concreted mucus, or calculous matter, and in eight or ten days ftupor and death fupervene in confequence of the retention of the feculent part of the blood.

This difeafe in a flighter degree, or when only a part of the kidney is affeeted, is fucceeded by partial inflammation of the kidncy in confequence of previous torpor. In that cafe greater actions of the fecretory veffels occur, and the nucleus of gravel is formed by the inflamed

Sect. XXX. 3. OF THE LIVER.

mucous membranes of the tubuli uriniferi, as farther explained in its place.

This torpor, or paralyfis of the fecretory veifels of the kidneys, like that of the liver, owes its origin to their being previoufly habituated to too great fimulus; which in this country is generally owing to the alcohol contained in ale or wine; and hence muft be regiftered amongft the dilcafes owing to incbriety; though it may be caufed by whatever occafionally inflames the kidney; as too violent riding 'on horfeback, or the cold from a damp bed, or by fleeping on the colle ground; or perhaps by drinking in general too little aqueous fluids.
III. I fhall conclude this fection on the difeafes of the liver induced by firituous liquors, with the well known ftory of Prometheus, which feems indeed to have becn invented by phyficians in thofe ancient times, wheri all things were clothed in hieroglyphic, or in fable. Prometheus was painted as ftealing fire from heaven, which might well reprefent the inflammable fpirit produced by fermentation; which may be faid to animate or enliven the man of clay: whence the conquefts of Bacchus, as well as the temporary mirth and noife of his devotees. But the after punifhment of thofe, who fteal this accurfed fire, is a vulture gnawing the liver; and well allegorifes the poor inebriate lingering for years under painful hepatic difcafes. When
the expediency of laying a further tax on the diftillation of fpirituous liquors from grain was canvaffed before the Houfe of Commons fome years ago, it was faid of the diftillers, with great truth, "They take the bread from the people, and convert it into poifon!" Yet is this manufactory of difeafe permitted to continue, as appears by its paying into the treafury above $900,000 l$. near a million of money annually. And thus, under the names of rum, brandy, gin, whifky, ufqucbaugh, ivine, cyder, beer, and porter, alcohol is become the bane of the Chriftian world, as opium of the Mahometan.

Evoe! parce, Liber, Parce, gravi metuende thyrfo!

Нов.

S E CT.

S E C T. XXXI.

OF TEMPERAMENTS.

I. The temperament of decreafed irritability known by weak pulfe, large pupils of the eyes, cold extremities. Are generally fuppofed to be too irritable. Bear pain better than labour. Natives of North-America contrafied with thofe upon the coaft of Africa. Narrow and broad pouldered poople. Trritable conflitutions bear Labour better than pain. II. Temperament of increafed fenjbility. Liable to intoxication, to inflammation, bromoptoe, gutta forena, entbufiafin, delirium, reverie. Thefe confitutions are indolent to voluntary exertions, and dull to irritations. The natives of South-America, and brute animals of this temperament. III. Of increafed voluntarity; thefe are fubjert to locked jaru, convulfions, epilepfy, mania. Are very active, bear cold, bunger, fatigue. Are fuited to great exertions. This temperament difinguibes mankind from other animals. IV. Of increafed afociation. Thefe bave great memories, are liable to quartan aryues, and fronger fympathies of parts with each other. V. Change of temperaments into one another.

Ancient writers have fpoken much of temperaments, but without fufficient precifion. By temperament, of the fyftem fhould be meant a permanent predifpofition to certain clafles of difeafes: without this definition a temporary predifpofition to every diftinct malady might be termed a tempcrament. There are four
kinds of conftitution, which permanently deviate from good health, and are perhaps fufficiently marked to be difinguifhed from each other, and conflitute the temperaments or predifpofitions to the irritative, fenfitive, voluntary, and affociate claffes of difeafes.

I. The Temperament of decreafed Irritability.

The difeafes, which are caufed by irritation, moft frequently originate from the defect of it ; for thofe, which are immediately owing to the excefs of it, as the hot fits of fever, are generally occafioned by an accumulation of fenforial power in confequence of a previous defect of irritation, as in the preceding cold fits of fever. Whereas the difeafes, which are caufed by fenfation and volition, moft frequently originate from the excefs of thofe fenforial powers, as will be explained below.

The temperament of decreafed irritability appears from the following circumftances, which Shew that the mufcular fibres or organs of fenfe are liable to become torpid or quiefcent from lefs defect of ftimulation than is productive of torpor or quiefcence in other conftitutions.
3. The firft is the wak pulfe, which in fome conftitutions is at the fame time quick. 2. The next moft marked criterion of this temperament is the largenefs of the aperture of the iris, or pupil of the eye, which has been reckoned by fome
fome a beautiful feature in the female countenance, as an indication of delicacy, but to an experienced qbferver it is an indication of debility, and is therefore a defect, not an excellence. The third moft marked circumftance in this conftitution is, that the extremities, as the hands and feet, or nofe and ears, are liable to become cold and pale in fituations in refpect to warmth, where thofe of greater ftrength are not affected. Thofe of this temperament are fubject to hyfteric affections, nervous fevers, hydrocephalus, fcrofula, and confumption, and to all other difeafes of debility.

Thofe, who poffefs this kind of conftitution, are popularly fuppofed to be more irritable than is natural, but are in reality lefs fo. This miftake has arifen from their generally having a greater quicknefs of pulfe, as explained in Sect. XII. J. A. XII. 3. 3; but this frequency of pulfe is not neceffary to the temperament, like the debility of it.

Perfons of this temperament are frequently found amongit the fofter fex, and amongft nar-row- Thouldered men; who are faid to bear labour worfe, and pain better than others. This lafi circumfance is fuppofed to have prevented the natives of North America from having been made Qaves by the Europeans. They are a narrowthouldered race of people, and will rather cxpire under the lafh, than be made to labour. Some
nations of Afia have fmall hands, as may be feen by the handles of their feymetars; which with their narrow fhoulders fhew, that they have not been aceuftomed to fo great labour with their hands and arms, as the European nations in agriculture, and thofe on the coafts of Africa in fivimming and rowing. Dr. Manningham, a popular aecoucheur in the beginning of this century, obferves in his aphorifms, that broad fhouldered men procreate broad-fhouldered children. Now as labour firengthens the mufeles employed, and increafes their bulk, it would feem that a few generations of labour or of indolence may in this refpect change the form and temperament of the body.

On the contrary, thofe who are happily porfeffed of a great degree of irritability, bear labour better than pain; and are ftrong, active, and ingenious. But there is not properly a temperament of inercafed irritability tending to difeafe, becaufe an inereafed quantity of irritative motions generally induees an increafe of plcafure or pain, as in intoxication, or inflammation; and then the new motions are the immediate. confequences of increafed fenfation, not of increafed irritation; which have hence been fo perpetually confounded with eaeh other.

II. Temperament of Senfibility.

There is not properly a temperament, or a predifpofition to difeafe, from decreafed fenfibility, fince irritability and not fenfibility is immediately necefiary to bodily health. Hence it is the excefs of fenfation alone, as it is the defect of irritation, that moft frequently produces difeafe. This temperament of increafed fenfibility is known from the increafed activity of all thofe motions of the organs of fenfe and mufcles, which are exerted in confequence of pleafure or pain, as in the beginning of drunkennefs, and in inflammatory fever. Hence thofe of this conftitution are liable to inflammatory difeafes, as hepatitis; and to that kind of confumption which is hereditary, and commences with fi:ght repeated hamoptoe. They have high-colourcd lips, frequently dark hair and dark cyes with large pupils, and are in that caic fubject to gutta ferena. They are liable to enthufiafm, 'delirium, and reveric. In this laft circumftance they are liable to ftart at the clapping of a door; becaufe the more intent any one is on the paffing current of his ideas, the greater furprife he experiences on their being diffevered by fome external violence, as explained in Sect. XIX. on reverie.

As in thefe confitutions more than the natural quantities of fenfitive motions are produced by, the incrcafed quantity of fenfation exiffing in the habit,
habit, it follows, that the irritative motions will be performed in fome degree with lefs energy, owing to the great expenditure of fenforial power on the fenfitive ones. Hence thofe of this tempe-s rament do not attend to flight ftimulations, as cxplained in Scet. XIX. But when a ftimulus is fo great as to excite fenfation, it produces greater fenfitive actions of the fyftem than in others; fuch as delirium or inflammation. Hence they are liable to be abfent in company; fit or lie long in one pofture; and in winter have the fkin of their legs burnt into various colours by the fire. Hence alfo they are fearful of pain; covet mufic and fleep; and delight in poetry and romance.

As the motions in confequence of fenfation are more than natural, it allo happens from the greater expenditure of fenforial power on them, that the voluntary motions are lefs eafily exerted. Hence the fubjects of this temperament are indo:lent in refpect to all voluntary exertions, whether of mind or body.

A race of pcople of this defcription feems to have been found by the Spaniards in the iflands of America, where they firft landed, ten of whom are faid not to have confumed more food than one Spaniard, nor to have been capable of more than one tenth of the excrtion of a Spaniard. Robertfon's Hifory. - In a fate fimilar to this the greateft part of the animal world pals their lives,
lives, between fleep and inactive reverie, except when they are excited by the call of hunger.
III. The Temperament of increafed Voluntarity.

Tiose of this conftitution differ from both the laft mentioned in this, that the pain, which gradually fubfides in the firft, and is productive of inflammation or delirium in the fecond, is in this fucceeded by the exertion of the mufcles or ideas, which are moft frequently connected with volition; and they are thence fubject to locked jaw, convulfions, epilepfy, and mania, as explained in Sect. XXXIV. Thofe of this temperament attend to the flightef irritations or fenfations, and immediately exert themfelves to obtain or avoid the objects of them; they can at the fame time bear cold and hunger better than others, of which Charles the Twelfin of Siweden was an inftanee. They are fuited and generally prompted to all great exertions of genius or labour, as their defires are more extenfive and more vehement, and their powers of attention and of labour greater. It is this facility of voluntary exertion, which diftinguifhes men from brutes, and which has made them lords of the creation.

IV. The Temperament of increafed Afociation.

This conflitution confifts in the too great facility, with which the fibrous motions acquire habits of affociation, and by which thefe affociations become proportionably ftronger than in thofe of the other temperaments. Thofe of this tempcrament are flow in voluntary excrtions, or in thofe dependent on fenfation, or on irritation. Hence great memorics have been faid to be attended with lefs fenfe and lefs imagination from Arifiotle down to the prefent time; for by the word memory thefe writers only underftood the unmcaning repetition of words or numbers in the order they were rcceived, without any voluntary efforts of the mind.

In this temperament thofe affociations of motions, which are commonly termed fympathies, act with greater ccrtainty and energy, as thofe between difturbed vifion and the inverfion of the motion of the ftomach, as in fea ficknefs; and the pains in the floulder from hepatic inflammation. Add to this, that the catenated circles of actions are of greater extent than in the other conftitutions. Thus if a ffrong vomit or cathartic be exhibited in this temperament, a fmallor quantity will produce as great an cffect, if it be given fome weeks afterwards; whereas in other temperaments this is only to be expecled, if it
be exhibited in a few days after the firft dofe. Hence quartan aguies are formed in thofe of this temperament, as explained in Section XXXII. on difeafes from irritation, and other intermittents are liable to recur from flight caufes many weeks after they have been cured by the bark.
V. The firft of thefe temperaments differs from the ftandard of health from defect, and the others from excefs of fenforial power ; but it fometimes happens that the fame individual, from the changes introduced into his habit by the different feafons of the year, modes or periods of life, or by accidental difeafes, paffes from one of thefe temperaments to another. Thus a long ufe of too much fermented liquor produces the temperament of increafed fenfibility; great indolence and folitude that of decreafed irritability; and want of the neceffaries of life that of increafed voluntarity.

S E C T. XXXII.

DISEASES OF IRRITATION.

I. Irritative fevers with frong pulfe. With weak pulfe. Symptoms of fever. Their fource. II. I. Quick pulfe is owing to decreafod irritability. 2. Not in flecp or in apoplexy. 3. From inanition. Owing to deficiency of fenfovial power. III. 1. Caules of fevcr. From defect of beat. Heat from fecretions. Pain of cold in the loins and forchead. 2. Great expenfe of fenforial pozver in the vital .- motions. Immerrion in cold zvater. Succeeding glow of कeat. Difficult refpiration in cold batbing explained. Why the cold bath invigorates. Bracing and relaxation are mechanical terms. 3. Ufes of.cold bathing. Ufes of cold air in fevers. 4. Ague fits from cold air. Whance their periodical returns. IV. Defect of difention a caufe of fover. Deficiency of blood. Transfufion of blood. V. 1. Defect of momentum of the blood from mechanic fimuli. 2. Air injected into the blood-vefiels. 3. Excrcife inereafes the momentum of the blood. 4. Sometimes blecding increafes the momentum of it. VI. Infuence of the fun and moon on difeafes. The chemical fiimulus of the blood. Menftruation obcys the lunutions. Queries. VII. Quicfence of large glands a caufe of fover. Swelling of the precoordia. V III. Other caufes of quicfience, as bunger, bad air, fear, anxicty. IX. I. Symptoms of the cold fit. 2. Of the hot fit. 3. Second cold fit why. 4. Inflammation introducced, or delirium, or fuupor. X. Rccapitulation. Fever not an eff ort of nature to relicuc barfelf. Doczrine of jpafm.
I. When
I. When the contractile fides of the heart and artcries perform a greater number of pulfations in a given time, and move through a greater arca at each pulfation, whether theere motions are occafioned by the ftimulus of the acrimony or quantity of the blood, or by their affociation with other irritative motions, or by the increafed irritability of the arterial fyftem, that is, by an increafed quantity of fenforial power, one kind of fever is produced; which may bc called Synocha irritativa, or Febris irritativa pulfu forti, or irritative fever with ftrong pulfe.

When the contractile fides of the heart and artềies perform a greater number of pulfations in a given time, but move through a much lefs area at each pulfation, whether thefe motions are occafioned by defect of their natural ftimuli, or by the defect of other irritative motions with which they are affociated, or from the inirritability of the arterial fyftem, that is, from a decreafed quantity of fenforial power, another kind of fever arifes; which may be termed, Typhus irritativus, or Febris irritativa pulfu debili, or irritative fever with weak pulfe. The former of thefe fcvers is the fynocha of nofologifts, and the latter the typhus mitior, or nervous fever. In the former there appears to bc an increafe of fenforial power, in the latter a deficiency of it; which is flewn to be the immediate caufe of
ftrength and weaknefs, as defined in Sect. XII. 1. 3.

It fhould be added, that a temporary quantity of ftrength or debility may be induced by the defect or excefs of fimulus above what is natural ; and that in the fame fever debility alreays exijts during the cold fit, though frength does not always exift during the hot fit.

Thefe fevers are always connected with, and generally induced by, the difordered irritative motions of the organs of fenfe, or of the inteftinal canal, or of the glandular fyftem, or of the abforbent fyftem; and hence are always compli= cated with fome or many of thefe difordered motions, which are termed the fymptoms of the fever, and which compofe the great varicty in thefo difeafes.

The irritative fevers both with ftrong and with weak pulfe, as well as the fenfitive fevers with ftrong and with weak pulfe, which are to be defcribed in the next fection, are liable to periodical remiffions, and then they take the name of intermittent fevers, and are diftinguifhed by the periodical times of their accefs.
II. For the better illuftration of the phenomena of irritative fevers we muft refer the reader to the circumftances of irritation explained in Sect. XII. and thail commence this intricate fubject by fpeaking of the quick pulfe, and proceed by con-
fidering
fidering many of the caufes, which either feparately or in combination moft frequently produce the cold fits of fevers.

1. If the arteries are dilated but to half their ufual diameters, though they contract twice as frequently in a given time, they will circulate only half their ufual quantity of blood: for as they are cylinders, the blood which they contain muft be as the fquares of their diameters. Hence when the pulfe becomes quicker and fmaller in the fame proportion, the heart and arteries act with lefs energy than in their natural fate. See Sect. XII. 1. 4.

That this quick finall pulfe is owving to want of irritability, appears, firf, becaufe it attends other fymptoms of want of irritability; and, fecondly, becaufe on the application of a. ftimulus greater than ufual, it becomes flower and larger. Thus in cold fits of agues, in hyfteric palpitations of the heart, and when the body is much exhaufted by hæmorrhages, or by fatigue, as well as in nerrous fevers, the pulfe becomes quick and fmall; and fecondly, in all thofe cafes if an increafe of ftimulus be added, by giving a little wine or opium ; the quick fmall pulfe becomes flower and larger, as any one may eafily experience on himfelf, by counting his pulfe after drinking one or two glaffes of wine, when he is faint from hunger or fatigue.

Notv nothing can fo ftrongly evince that this
quick fmall pulfe is owing to defect of irritability, as that an additional fiimulus, above what is natural, makes it become flower and larger immediately: for what is meant by a defect of irritability, but that the arterics and heart are not excited into their ufual exertions by their ufual quantity of ftimulus? Dut if you increafe the quantity of ftimulus, and they immediately act with their ufual encrgy, this proves their previous want of their natural degree of irritability. Thus the trembling hands of drumkards in a morning become fteady, and acquire ftrength to perform their ufual offices, by the accuftomed ftimulus of a glafs or two of brandy.
2. In fleep and in apoplexy the pulfe becomes flower, which is not owing to defect of irriability, for it is at the farne time larger; and thence the quantity of the circulation is rather increafed than diminifhed. In thefe cafes the organs of fenfe are clofed, and the voluntary power is fufpended, while the motions dependent on internal irritations, as thofe of digeftion and fecretion, are carried on with more than their ufual vigour ; which has led funerficial obfervers to confound there cares with thofe arifing from want of irritability. Thus if you lift up the cyelid of an apoplectic patient, who is not actually dying, the iris will, as ufual, contract itfelf, as this motion is afociated with the ftimulus of light; "but it is no: fo in the lat ftages of nervous fevers, where
the pupil of the eye continues expanded in the broad day-light: in the former cafe there is a want of voluntary power, in the latter a want of imitability.

Hence alfo thofe conflitutions which are deficient in quantity of irritability, and which poffefs too great fenfibility, as during the pain of hunger, of hyfteric fpafms, or nervous headaehs, are generally fuppofed to have too much irritability; and opium, whieh in its due dofe is a moft powerful ftimulant, is erroneoufly called a fedative ; becaufe by increafing the irritative motions it decreafes the pains arifing from defect of them.

Why the pulfe fhould become quieker both from an increafe of irritation, as in the fynocha irritativa; or irritative fever with ftrong pulfe; and from the decreafe of it, as in the typhus ir. ritativus, or irritative fever with weak pulfe; feems paradoxical. The former circumftance needs no illuftration; fince if the fimulus of the blood, or the irritability of the fanguiferous fyftem be inerenfed, and the ftrength of the patient. not diminifhed, it is plain that the motions muft be performed quieker and ftronger.

In the latter circumftance the weaknefs of the mufcular power of the heart is foon over-balanced by the elafticity of the coats of the arteries, which they poffefs befides a mufcular power of contraction; and hence the arteries are diftended to lefs
than their ufual diameters. The heart being thus ftopped, when it is but half emptied, begins fooner to dilate again; and the arteries being dilated to lefs than their ufual diameters, begin fo mueh fooner to eontract themfelves; infomuch, that in the laft ftages of fevers with weaknefs the frequeney of pulfation of the heart and arteries beeomes doubled; which, however, is never the eale in fevers with ftrength, in whieh they feldom exceed 118 or 120 pulfations in a minute. It muft be added, that in thefe eafes, while the pulfe is very fmall and very quiek, the heart often feels large, and labouring to one's hand; which coineides with the above explanation, fhewing that it does not completely empty itfelf.
3. In cafes however of debility from paueity of blood, as in animals which are bleeding to death in the flaughter-houfe, the quick pulfations of the heart and arteries may be owing to their not being diftended to more than half their ufual diaftole; and in confequence they muft contract fooner, or more frequently, in a given time. As weak people are liable to a deficient quantity of blood, this eaufe may oceafionally contribute to quicken the pulfe in fevers with debility, which may be known by applying one's hand upon the heart as above; but the prineipal caufe I fuppofe to eonfift in the diminution of fenforial power. When a mufele contains, or
is fupplied with but little fenforial power, its contraction foon ceafes, and in confequence may foon recur, as is feen in the trembling hands of people wcakened by age or by drunkennefs. See Sect. XII. 1. 4. XII. 3. 4.

It may neverthelefs frequently happen, that both the deficiency of fimulus, as where the quantity of blood is leffened (as defcribed in No. 4. of this fection), and the deficieney of fenforial power, as in thole of the temperament of inirritability, defcribed in Sect. XXXI. oecur at the fame time; which will thus add to the quieknefs of the pulfe and to the danger of the difeafe.
III. 1. A certain degree of heat is neceffary to mufcular motion, and is, in confequence, effential to life. This is obferved in thofe animals and infects which pafs the cold feafon in a torpid ftate, and which revive on being warmed by the fire. This neceffary fimulus of heat has two fources; one from the fluid atmofphere of heat, in which all things are immerfed, and the other from the internal combinations of the particles, which form the various fluids, which are produced in the extenfive fyftems of the glands. When either the external heat, whieh furrounds us, or the internal production of it, becomes leffened to a certain degree, the pain of cold is perceived.

This pain of cold is experienced moff fenfibly
by our teeth, when ice is held in the , mouth; or by our whole fyftem after having been previoufly accuftomed to much warmith. It is probable, that this pain does not arife from the mechanical or chemical effects of a deficiency of heat; but that, like the organs of fenfe by which we perceive hunger and thirft, this fenfe of heat fuffers pain, when the ftimulus of its object is wanting to excite the irritative motions of the organ ; that is, when the fenforial power becomes too muchaccumulated in the quiefeent fibres. See Sect. XII. 5.3. For as the perifaltic motions of the ftomach are leffencd, when the pain of hunger is great, fo the action of the cutancous capillarics are leffened during the pain of cold; as appears by the palenefs of the fkin, as explained in Sect. XIV. 6. on the production of ideas.

The pain in the finall of the back and forehead in the cold fits of the ague, in nervous hemicrania, and in hyferic paroxyfms, when all the irritative motions are much impaired, feems to arife from this caufe; the veffels of thefe membranes or mufcles become torpid by their irritative affociations with other parts of the body, and thence produce lefs of their accuftomed fecretions, and in confequence lefs heat is evolved, and they experience the pain of cold; which coldncfs may often be felt by the hand applied upon the affected part.
2. The importance of a greater or lefs deduction
tion of heat from the fyftem will be more cafy to comprehend, if: we firft coufider the great expenfe of fenforial power ufed in carrying on the vital motions that is, which circulates, abforbs, fecretes, aderates, and elaborates the whole mafs of fluids', with unceafing affidiuity. The fenforial ipoiver; or fpirit of animation, ufed in giving perpetual and ftrong motion to the heart, which overcomes the elafticity and vis inertiæ of the whole arterial fyftem; next the expenfe of fenforial power in moving with great force and velocity the innumerable trunks and ramifications of the arterial fyftem ; the expenfe of fenforial power in circulating the whole mais of blood through the long and intricate intortions of the very fine veffels, which compofe the glands and capillarics; then the expenfe of fenforial power in the exertions of the abforbent extremities of all the lacteals, and of all the lymphatics, which open their mouths on the external furface of the fkin, and on the internal furfaces of every cell or interffice of the body; then the expenfe of fenforial power in the various abforption, by which the blood is received from the capillary veffels, or glands, where the anterial power ceafes, and is drunk up, and returned to the heart; next the expenfe of fenforial power ufed by the mufcles of refpiration in their office of perpetually expanding the bronchia, or air-veffels, of the lungs; and laftly in the unceafing periftaltic mo-
tions of the flomach and whole fyftem of inteftines, and in all the fecretions of bile, gaftric juiee, mucus, perfpirable matter, and the various exeretions from the fyltem. If we confider the ceafelefs expenfe of fenforial power thus perpetually employed, it will appear to be mueh greater in a day than all the voluntary exertions of our mufcles and organs of fenfe confume in a week; and all this without any fenfible fatigue! Now, if but a part of thefe vital motions are impeded, or totally flopped for but a fhort time, we gain an idea, that there muft be a great accumulation of fenforial power; as its production in thefe organs, which are fubject to perpetual activity, is continued during their quiefcence, and is in confequence aecumulated.

While, on the contrary, where thofe vital organs act too foreibly by increafe of ftimulus without a proportionally-inereafed production of fenforial power in the brain, it is cvident, that a gieat deficiency of action, that is torpor, muft foon follow, as in fevers; whereas the locomotive mufcles, whieh act only by intervals, are ncither liable to fo great accumulation of fenforial power during their times of inactivity, nor to fo great an exhauftion of it during their times of action.

Thus, on going into a very cold bath, fuppofe at 33 degrecs of heat on Fahrenheit's fcale, the action of the fubeutaneous capillaries, or glands, and of the mouths of the cutaneous abforbents is diminifhed,
diminifhed, or ceafes for a time. Hence lefs or no blood paffes thefe capillaries, and palenefs fucceeds. But foon after emerging from the bath, a more florid colour and a greater degree of heat are generated on the fkin than was poffeffed before immerfion; for the capillary glands, after this quiefcent ftate, occafioned by the want of fimulus, become more irritable than ufual to their natural fimuli, owing to the accumulation of fenforial powcr, and hence a greater quantity of blood is tranfmitted through them, and a greatcr fecretion of perfirable matter; and, in confequence, a greater degree of heat fucceeds. During the continuance in cold water the breath is cold, and the act of refpiration quick and laborious; which have generally been afcribed to the obfruction of the circulating fluid by a fpafm of the cutaneous vcffels, and by a confequent accumulation of blood in the lungs, occafioned by the preffure as well as by the coldnefs of the water. This is not a fatisfactory account of this curious phænomenon, fince at this time the whole circulation is lefs, as appears from the fmallnefs of the pulfe and coldnefs of the breath; which fhow that lefs blood paffes through the lungs in a given time ; the fame laborious breathing immediately occurs when the palenefs of the fkin is produced by fear, where no external cold or preffure are applied.

The minute veffels of the bronchia, through
which the blood paffes from the arterial to the wenal fyftem, and whiel correfpond with the cutaneous capillaries, have frequently been expofed to cold air, and become quiefcent along with thofe of the flkin; and hence their motions are fo affociated together, that when one is affected either with quiefeence or exertion, the other fympathizes with it, aecording to the laws of irritative affociation. See Sect. XXVII. 1. on hæmorrhages.

Befides the quiefcence of the minute veffels of the lungs, there are many other fyffems of veffels whieh beeome torpid from their irritative affociations with thofe of the fkin, as the abforbents of the bladder and intefines; whence an evacuation of pale urine oecurs, when the naked fkin is expofed only to the coldnefs of the atmofphere; and $f_{\text {, inkling the naked body with cold water is }}$ known-ci, remove even pertinaeious conftipation of the bowcls. From the quiefcence of fuch extenfive fyftems of veffels as the glands'and eapillaries of the flin, and the minute veffels of the lungs, with their various abiorbent feries of veffels, a great aecumulation of fenforial powers is occafioned; part of which is again expended in the increafed exertion of all thefe veffels, with an univerfal glow of heat in confequence of this exertion, and the remainder of it adds vigour to both the vital and roluntary excrtions of the whole day.

If the activity of the fubcutaneous veffels, and of thofe with which their actions are affociated, was too great before cold immerfion, as in the hot days of fummer, and by that means the fenforial power was previoufly diminifhed, we fee the caufe why the cold bath gives fuch prefent frength; namely, by ftopping the unneceffary activity of the fubcutancous veffels, and thus preventing the too great exhaufion of fenforial power; which, in metaphorical language, has been called bracing the fyftem: which is, however, a mechanical term, only applicable to drums, or mufical ftrings : as on the contrary the word relaxation, when applied to living animal bodies, can only mean too finall a quantity of fimulus, or too fimall a quantity of fenforial power; as explained in Sect. XII. 1.
3. This experiment of cold bathing 1 tents us with a fimple fever-fit; for the pulle is weak, fmall, and quick during the cold immerfion; and becomes ftrong, full, and quick during the fubfequent glow of heat; till in a few minutes thefe fymptoms fubfide, and the temporary fever ceafes.

In thofe conftitutions where the degree of inirritability, or of debility, is greater than natural, the coldnefs and palenefs of the fkin with the quick and weak pulfe continue a long time after the patient leaves the bath; and the fubfequent heat approaches by uneqnal fluthings, and he feels himfelf difordered for many hours. Hence the bathing in a cold fpring of water, where Vol. If.

D
the
the heat is but forty-eight degrees on Fahrenheil's thermometer, much difagrecs with thofe of weak or inirritable habits of body; who poffefs fo little fenforial power, that they cannot without injury bear to have it diminifled even for a fhort time; but who can neverthelefs bear the more temperate coldnefs of Buxton bath, which is about eighty degrees of heat, and which ftrengthens them, and makes them by habit lefs liable to great quicfence from fmall variations of cold; and ${ }^{3}$ thence lefs liable to be difordered by the unavoidable - accidents of life. Hence it appears, why people of thefe inirritable conftitutions, which is another expreffion for fenforial deficiency, are often much injured by bathing in a cold fpring of water; and why they fhould continue but a very fhort time in baths, which are colder than their bodies; and fhould gradually increafe both the degree of coldnefs of the water, and the time of their continuance in it, if they would obtain falutary effects from cold immerfions. See Sect. XII. 2. 1.

On the other hand, in all cales where the heat of the external furface of the body, or of the internal furface of the lungs, is greater than natural, the ufe of expofure to cool air may be deduced. In fever-fits attended with ftrength, that is with great quantity of fenforial power, it removes the adiditional fiimulus of heat from the furfaces above mentioned, and thus prevents their excefs of ufclefs motion; and in feyer-fits at-
tended with debility, that is with a deficiency of the quantity of fenforial power, it prevents the great and dangerous wafte of fenforial power expended in the unneceffary increafe of the actions of the glands and capillaries of the fkin and lungs.
4. In the fame manner, when any one is long expofed to very cold air, a quiefcence is produced of the cutaneous and pulmonary capillaries and abforbents, owing to the deficiency of their ufual ftimulus of heat; and this quiefcence of fo great a quantity of veffels affects, by irritative affociation, the whole abforbent and glandular fyftem, which becomes in a greater or lefs degree quief. cent, and a cold fit of fcver is produced.

If the deficiency of the flimulus of heat is very great, the quiefcence becomes fo general as to extinguifh life, as in thofe who are frozen to death.

If the deficiency of heat be in lefs degree, but yet fo great as in fome meafure to diforder the fyftem, and fhould occur the fucceeding day, it wiil inducc a greater degree of quiefcence than before, from its acting in concurrence with the period of the diurnal circle of actions, explained in Sect. XXXVI. Hence from a finall beginning a greatcr and greater degree of quiefcence may be induced, till a complete fever-fit is form* ed; and which will continụe to recur at the periods by which it was produced. See Sect. XVII, 3. 6.

If the degree of quiefcence occafioned by defcet of the ftimulus of heat be very great, it will recur a fecond time by a flighter caufe, than that which firf induced it. If the caufe, which induces the fecond fit of quiefecnce, rccurs the fucceeding day, the quotidian fever is produced; if not till the alternate day, the tertian fever; and if not till after feventy-two hours from the firft fit of quiefcence, the quartan fever is formed. This laft kind of fever recurs lefs frequently than the other, as it is a difeafe only of thofe of the temperament of affociability, as mentioned in Sect. XXXI.; for in other conftitutions the capability of forming a habit ceafes, before the new caufe of quiefcence is again applied, if that does not occur fooner than in feventy-two hours.

And hence thofe fevers, whofe caufe is from cold air of the night or morning, are more liable to obferve the folar day in their periods; while thofe from other caufes frequently obferve the lunar day in their periods, their paroxyfms returning near an hour later every day, as explained in Sect. XXXVI.
IV. Another frequent caufe of the cold fits of fever is the defcet of the fiimulus of diftention. The whole arterial fyftem would appear, by the experiments of Haller, to be irritable by no other ftimulus, and the motions of the heart and alimeritary canal are ccrtainly in fome meafure dependent on the fanc caufe. Sec Scet. XIV. 7.

Henee there can be no wonder, that the diminution of diftention fhould frequently induce the quiefcence, which conffitutes the begimning of fever-fits.

Monfieur Lieutaud has judiciounly mentioned the deficiency of the quantity of blood amongft the caufes of difeafes, which he fays is frequently evident in diflections: fevers are hence brought on by great hæmorrhages, diarrhœas, or other evacuations; or from the continued ufe of diet, whieh contains but little nourifhment; or from the exhauftion occafioned by violent fatigue, or by thofe chronic difeafes in which the digeftion is much impaired; as where the ftomach has been long affected with the gout or feirrhus; or. in the paralyfis of the liver, as defcribed in Sect. XXX. Hence a paroxyfin of gout is liable to recur on bleeding or purging; as the torpor of fome vifcus, which precedes the inflammation of the foot, is thus induced by the want of the ftimulus of diftention. And hence the extremities of the body, as the nofe and fingers, are more liable to become cold, when we have long abftained from food; and hence the pulfe is increafed both in ftrength and veloeity above the natural ftandard after a full meal by the ftimulus of diftention.

However, this ftimulus of diftention, like the ftimulus of heat above defrribed, thaugh it contributes much to the due action not only of the

> D3 feart,
heart, arteries, and alimentary canal, but feems neceffary to the proper. fccretion of all the various glands; yet perhaps it is not the fole caufe of any of thefe numerous motions: for as the lacteals, cutaneous abforbents, and the various glands appear to be ftimulated into action by the peculiar pungency of the fluids they abforb, fo in the inteftinal canal the pungency of the digefing aliment, or the acrimony of the feces, ferms to contribute, as wocll as their bulk, to promote the periftaltic motions; and in the arterial fyftem, the momentum of the particles of the circulating blood, and their acrimony, ftimulatc the arteries, as well as the diftention occafioned by it. Where the pulfe is fmall this defect of diftention is prefent, and contributes much to produce the febris irritativa pulfu debili, or irritative fever with weak pulfe, callcd by modern writcrs nervous fevcr, as a predifponent caufe. See Sect. XII. 1.4. Might not the transfufion of blood, fuppofe of four ounces daily from a ftrong man, or other Healthful animal, as a fheep or an afs, be ufed in the early fate of nervous or putrid fcvers with great profpect of fuccefs ?
V. The defect of the momentum of the particles of the circulating blood is another caufc of the quicfeence, with which the cold fits of fever commence. This ftimulus of the momentum of the progreffive particles of the blood docs not act over the whole body like thofe of heat and dif-
tention
tention above deferibed, but is confined to the arterial fyftem; and differs from the ftimulus of the diftention of the blood, as much as the vibration of the air does from the currents of it. Thus are the differcnt organs of our bodies ftimulated by four different mechanic properties of the external world: the fenfe of touch by the preffure of folid bodies fo as to difinguifh their figure; the mufcular fyftem by the diftention, which they occafion ; the internal furface of the arteries, by the momentum of their moving particles; and the auditory nerves, by the vibration of them: and thefe four mechanic properties are as different from each other as the various chemical ones, which are adapted to the numerous glands, and to the other organs of fenfe.
2. The momentum of the progreffive particles of blood is compounded of their velocity and their quantity of matter: hence whatever circumflances diminifh either of thefe without proportionally increafing the other, and without fuperadding either of the general ftimuli of heat or diftention, will tend to produce a quiefcence of the arterial fyftem, and from thence of all the other irritative motions, which are connected with it.

Hence in all thofe conftitutions or difeafes where the blood contains a greater proportion of ferum, which is the lighteft part of its compofition, the pulfations of the arteries are weaker, as
in nervous fevers, chlorofis, and hyficric complaints; for in thefe cafes the momentum of the progreffive particles of blood is lefs; and hence, where the cienfer parts of its compofition abound, as the red part of it, or the coagulable lymph, the arterial pulfations are ftronger; as in thofe of robuft health, and in inflammatory difeafes.

That this ftimulus of the momentum of the particles of the circulating fluid is of the greateft confequence to the arterial action, appears from the experiment of injecting air into the blood veffels, which feems to deftroy animal life from the want of this ftimulus of momentum; for the diftention of the arteries is not diminifhed by it, it poffeffes no corrofive aerimony, and is lefs liable to repafs the valves than the blood itfelf; fince air-valves in all machinery require much lefs accuracy of conftruction than thofe which are oppofed to water.
3. One method of increafing the velocity of the blood, and in confequence the momentum of its particles, is by the exercife of the body, or by the friction of its furface; fo, on the contrary, too great indolence contributes to decreafe this ftimulus of the momentum of the particles of the circulating blood, and thus tends to induce quiefence; as is feen in hyfteric cafes, and chlorofis, and the other difeafes of fedentary people.
4. The velocity of the particles of the blood in
certain circumftances is increafed by venefection, which, by removing a part of it, diminifhes the refiftance to the motion of the other part, and hence the momentum of the particles of it is increafed. This may be eafily underftood by confidering it in the extreme, fince, if the refiftance was greatly increafed, fo as to overcome the propelling power, there could be no velocity, and in confequence no momentum at all. From this circumfance arifes that curious phænomenon, the truth of which I have been more than once witnefs to, that venefection will ofter inftantaneoufly relieve thofe nervous pains, which attend the cold periods of hyffcric, afihmatic, or epileptic difeares; and that even where large dofes of opium have been in vain exhibited. In thefe cafes the pulfe becomes ftronger after the bleeding, and the extremities regain their natural warmth; and an opiate then given acts with much more certain effect.
VI. There is another caufe, which feems occafionally to induce quiefcence into fome part of our fyftem, I mean the influence of the fun and moon ; the attraction of thefe luminaries, by decreafing the gravity of the particles of the blood, cannot affect their momentum, as their vis inertiæ remains the fame; but it may neverthelefs produce fome chemical change in them, becaufe whatever affects the general attractions of the particles of matter may be fuppofed from analogy
to affect their fpecific attractions or affinities: and thus the ftimulus of the particles of blood may be diminifhed, though not their momentum. As the tides of the fea obey the fouthing and northing of the moon (allowing for the time neceffary for their motion, and the obffructions of the fhores), it is probable, that there are alfo atmofpheric tides on both fides of the earth, which to the inhabitants of another planet might fo deffect the light as to refemble the ring of Saturn. Now as thefe tides of water, or of air, are raifed by the diminution of their gravity, it follows, that their preffure on the furface of the earth is no greater than the preffure of the other parts of the ocean, or of the atmofphere, where no fuch tides exift; and therefore that they cannot affect the mercury in the barometer. In the fame manner, the gravity of all other terreftrial bodies is diminifhed at the times of the fouthing and northing of the moon, and that in a greater degree when this coincides with the fouthing and northing of the fun, and this in a ftill greater degree about the times of the equinoxes. This decreafe of the gravity of all bodics during the time the moon paffes our zenith or nadir-might poffibly be fhewn by the flower vibrations of a pendulum, compared with a fpring clock, or with aftronomical obfervation. Since a pendulum of a certain length moves flower at the line than near the poles, becaufe the gravity being dimi(nifhod
nifhed and the vis inertiæ continuing the fame, the motive power is lefs, but the refiftance to be overcome continues the fame. The combined powers of the lunar and folar attraction are eftimated by Sir Ifaac Newton not to exceed one $7,868,850$ th part of the power of gravitation, which feems indced but a fmall circumftance to produce any confiderable effect on the iweight of fublunary bodies, and yet this is fufficient to raife the tides at the equator above ten fect high; and if it be confidered, what fmall impulfes of other bodies produce their effects on the organs of fenfe adapted to the perception of them, as of vibration on the auditory nerves, we fhall ceafe to be furprifed, that fo minute a diminution in the gravity of the particles of blood fhould fo far affect their chemical changes, or their ftimulating quality, as, joined with other caufes, fometimes to producc the beginnings of difeafes.

Add to this, that if the lunar influence produces a very fmall degree of quiefcence at firf, and if that recurs at certain periods even with lefs power to produce quiefcence than at firft, yet the quicfcence will daily increafe by the acquired habit acting at the fame time, till at length fo great a degree of quiefcence is induced as to produce phrenfy, canine madnefs, epilepfy, hyfteric pains or cold fits of fever, inftances of many of which are to be found in Dr. Mead's work on this fubject. The folar influence alfo
appears daily in feveral difeafes; but as darknefs, filence, flcep, and our periodical meals mark the parts of the folar circle of actions, it is fometimes dubious to which of thefe the periodieal returns of thefe difeales are to be afcribed.

As far as I have been able to obferve, the periods of inflammatory difeafes obferve the folar day; as the gout and rhecunatifm have their greateft quiefcence about noon and midnight, and their exacerbations fome hours after; as they have more frequently their immediate caufe from cold air, inanition, or fatigue, than from the effects of lunations : whilft the cold fits of hyfferic patients, and thofe in nervous fevers, more frequently occur twice a day, later by near half an hour each time, aecording to the lunar day; whillt fome fits of intermittents, which are undifturbed by medicines, return at regular folar periods, and others at lunar ones; which may, probably, be owving to the difference of the periods of thofe external circumftances of cold, inanition, or lunation, which immediately caufed then.

We muft, however, obferve, that the periods of quiefcence and exacerbation in difeafes do not always commence at the times of the fyzygics or quadratures of the moon and fun, or at the times of their paffing the zenith or madir ; but as it is probable, that the ftimulus of the particles of the circumflucnt blood is gradually diminifhed from
the time of the quadratures to that of the fyzygies, the quiefcence may commence at any hour, when co-operating with other caufes of quiefcence, it becomes great enough to produce a difeafe : afterwards it will continue to recur at the fame period of the lunar or folar influence; the fame caufe operating conjointly with the acquired habit, that is with the catenation of this new motion with the diffevered links of the lunar or folar circles of animal action.

In this manner the periods of menftruation obey the lunar month with great exactnefs in healthy patients (and perhaps the venereal orgafm in brute animals does the fame), yet thefe periods do not commence either at the fyzygies or quadratures of the lunations, but at whatever time of the linar periods they begin, they obferve the fame in their returns till fome greater caufe difturbs them.

Hence, though the beft way to calculate the time of the expected returns of the paroxyfms of periodical difeafes is to count the number of hours between the commencement of the two preceding fits, yet the following obfervations may be worth attending to, when we endeavour to prevent the returns of maniacal or epileptic difeafes; whofe periods (at the beginning of them efpecially) frequently obferve the fyzygies of the moon and fun, and particularly about the equinox.

The greateft of the two tides happening in every revolution of the moon, is that when the moon approaches neareft to the zenith or nadir; for this reafon, while the fun is in the northern figns, that is during the vernal and fummer months, the greater of the two diurnal tides in our latitude is that, when the moon is above the horizon; and when the fun is in the fouthern figns, or during the autumnal and winter months, the greater tide is that, which arifes when the moon is below the horizon; and as the fun approaches fomewhat nearer the earth in winter than in fummer, the greateft equinoctial tides are obferved to be a little before the vernal equinox, and a little after the autumnal one.

Do not the cold periods of lunar difeafes commence a few hours before the fouthing of the moon during the rernal and fummer months, and before the northing of the moon during the autumnal and winter months? Do not palfies and apoplexies, which oceur about the equinoxes, happen a few days before the vernal equinoctial lunation, and after the autumnal one? Are not the periods of thofe diurnal difeafes more obftinate, that commence many hours before the fouthing or northing of the moon, than of thofe which commence at thofe times? Are not thofe palfies and apoplexies more dangerous which com-mence many days bcfore the fyzygies of the moon,
moon, than thofe which happen at thofe times? See Sect. XXXVI. on the periods of difeafes.
VII. Another very frequent caufe of the cold fit of fever is the quiefcence of fome of thofe large congeries of glands, which compofe the liver, fplecn, or pancreas; one or more of which are frequently fo enlarged in the autumnal intermittents as to be perceptible to the touch externally, and are called by the vulgar aguc-cakes. As thefe glands are ftimulated into action by the fpecific pungency of the fluids, which they abforb, the general caufe of their quicfeence feems to be too great infipidity of the fluids of the body, co-operating perhaps at the fame time with other general caufes of quiefcence.
Hence, in marfhy countries at cold feafons, which have fucceeded hot ones, and amongft thofe, who have lived on innutritious and unftimulating diet, thefe agues arc moft frcquent. The cnlargement of thefe quiefcent vifcera, and the fivelling of the precordia in many other fevers, is, moft probably, owing to the fame caufe; which may confift in a general deficiency of the production of fenforial power, as well as in the diminifhed ftimulation of the fluids; and when the quiefcence of fo great a number of glands, as conftitute one of thofe large vifcera, commences, all. the other irritative motions are affected by their conncetion with it, and the cold fit of fever is produced.
VIII. There
VIII. There are many other caufes, which produce quiefcence of fome part of the animal fyftem, as fatigue, hunger, thirf, bad diet, difappointed love, unwholefome air, exhauftion from evacuations, and many others; but the laft caufe, that we fhall mention, as frequently productive of cold fits of fever, is fear or anxiety of mind. The pains, which we are firft and moft generally acquainted with, have been produced by defcet of fome fimulus; thus, foon after our nativity we become acquainted with the pain from the coldnefs of the air, from the want of refpiration, and from the want of food. Now all thefe pains occafioned by defect of fiimulus are attended with quiefcence of the organ, and at the fame time with a greater or lefs degree of quiefcence of other parts of the fyftem: thus, if we even endure the pain of hunger fo as to mifs one meal inftead of our daily habit of repletion, not only the periftaltic.motions of the ftomach and bowels are diminifhed, but we are more liable to coldnefs of our extremities, as of our nofes, and ears, and feet, than at other times.

Now, as fear is originally excited by our having experienced pain, and is itfelf a painful affection, the fame quiefcence of other fibrous motions accompanies it, as has been moft frequently connected with this kind of pain, as explained in Sect. XVI. 8. 1. as the coldnefs and palenefs of the fkin, trembling, difficult refpiration, indigef-
tion, and other fymptoms, which contribute to form the cold fit of fevers. Anxiety is fear contiinued through a longer time, and, by producing chronical torpor of the fyftem, extinguifhes life flowly, by what is commonly termed a broken heart.
IX. 1. We now ftep forwards to confider the other fymptoms in confequence of the quiefcence which begins the fits of fever: If by any of the circumftances before deferibed, or by two or more of them aeting at the fame time, a great degree of quicfcence is induced on any confiderable part of the circle of irritative motions, the whole clafs of them is more or lefs difturbed by their irritative affociations. If this torpor be occafioned by a deficient fupply of fenforial power, and happens to any of thofe parts of the fyftem, which are accuffomed to perpetual activity, as the vital motions, the torpor increafes rapidly, becaufe of the great expenditure of fenforial power by the inceffant activity of thofe parts of the fyftem, as fhewn in No.3.2. of this Section. Hence a deficiency of all the fecretions fucceeds, and as animal heat is produced in proportion to the quantity of thofe fecretions, the coldnefs of the flin is the firft circumftance, which is attended to. Dr. Miartin afferts, that fome parts of his bociy were warmer than natural in the cold fit of fever; but it is
voL. II. $\quad \mathrm{E}$. certain,
certain, that thofe, which are uncovered, as the fingers, and nofe, and ears', are much colder to the touch, and paler in appearance. It is porfible, that his experiments were made at the beginning of the fubfequent hot fits; which commence with partial diftributions of heat, owing to fome parts of the body regaining their natural irritability fooner than others.

From the quiefcence of the anaftomofing capillaries a palenefs of the flkin fucceeds, and a lefs recretion of the perfpirable matter; from the quiefience of the pulmonary capillaries a difficulty of refpiration arifes; and from the quiefcence of the other glands lefs bile, lefs gaftric and pancreatic juice, are fecreted into the fomach and inteftines, and lefs mucus and faliva are poured into the mouth; whence arifes the dry tongue, coftivenefs, dry ulcers, and paucity of urine. From the quiefcence of the abforbent fyftem arifes the great thirft, as lefs moifture is abforbed from the atmofphere. The abforption from the atmofphere was obferved by Dr. Lifter to amount to eighteen ounces in one night, above what he had at the fame time infenfibly perfiped. See Langrifh. On the fame account the urine is pale, though in fmall quantity, for the thinner part is not abforbed from it; and when repeated ague-fits continue long, the legs fwell from the diminifted abforption of the cellular abforbents.

From the quiefcence of the inteftinal canal a lofs of appetite and flatulencies proceed. From the partial quiefecnce of the glandular vifcera a fivelling and tenfion about the precordia become fenfible torthe touch; which are occafioned by the delay of the fluids from the defect of venous or lymphatic abforption. The pain of the forehead, and of the limbs, and of the fmall of the back, arifes from the quiefcence of the membranous fafcia, or mufcles of thofe parts, in the fame manner as the fkin becomes painful, when the veffils, of which it is compofed, become quiefcent from cold. The trembling in confequence of the pain of coldnefs, the refleffinefs, and the yawning, and ftretching of the limbs, together with the fhuddering, or rigors, ase convulfive motions; and will be explained amongft the difeafes of volition ; Sect. XXXIV.

Sicknefs and vomiting are a frequent fymptom in the beginnings of fever-fits, the mufcular fibres of the ftomach fhare the general torpor and debility of the fyftem ; their motions become firft leffened, and ftop, and then become retrograde; for the act of vomiting, like the globus hyftcricus and the borborigmi of hypochondriafis, is always a fymptom of debility, either from want of ftimulus, as in hunger; or from want of fenforial power, as after intoxication; or from fympathy with fome other torpid irritative motions, as in the cold fits of ague. Siec Sect. XII. 5: 5 XXIX. 11. and XXXV.

E2
1.3.

1. 3. where this act of vomiting is further explained.

The fmall pulfe, which is faid by fome writers to be flow at the commencement of ague-fits, and which is frequently trembling and intermittent, is owing to the quiefeence of the heart and arterial fyftem, and to the reffifance oppofed to the circulating fluid from the inactivity of all the glands and capillarics. The great weaknefs and inability to voluntary motions, with the infenfibility of the extremities, are owing to the general quiefcence of the whole moving fyftem ; or, perhaps, fimply to the defieient production of fenforial power.

If all thefe fymptoms are further inereafed, the quiefcence of all the mufcles, including the heart and arteries, becomes complete, and death enfues. This is, moft probably, the cafe of thole who are farved to death with cold, and of thofe who are faid to dic in Holland from long fkaiting on their frozen canals.
2. As foon as this general quiefecnce of the fyftem ccafes, either by the diminution of the caufe, or by the accumulation of fenforial power, (as in fyncope, Scet. XII. 7. 1.) which is the natural confcquerice of previous quiefcence, the loot fit commenees. Every gland of the body is now fimmatated into ftronger aftion than is natural, as its irritability is increafed by accumulation of fenforial power during its late quiefeence, a fuper-
a fuperabundance of all the fecretions is produced, and an increafe of heat in confequence of the increafe of thefe fecretions. The fkin becomes red, and the perpipiration great, owing to the increafed action of the capillaries during the hot part of the paroxyfm. The fecreion of perfpirable matter is perhaps greater during the hot fit than in the fiveating fit which follows; but as the abforption of it alfo is greater, it does not fland on the flin in vifible drops: add to this, that the evaporation of it alfo is greater, from the increafcd heat of the flin. But at the decline of the hot fit, as the mouths of the abforbents of the fkin are expofed to the cooler air, or bed clothes, thefe veffels fooner lofe their increafed activity, and ceafe to abforb more than their natural quantity : but the fecerning veffels for fome time longer, being kept warm by the circulating blood, continuc to pour out an increafed quantity of perfpirable matter, which now fands on the fkin in large vifible drops; the exhalation of it allo being leffened by the greater cooinefs of the fkin, as well as its abforption by the diminifhed action of the lymphatics. See Clafs I. J. 2. 3.

The increafed fecretion of bile and of other fluids poured into the inteftines frequently induces a purging at the decline of the hot fit: for as the external abforbent veffels have their mouths expofed to the cold air, as above mentioned, they ceafe to bc excited into unnatural activity fooner than the fecretory veffels, whofe mouths are ex-
pored to the warmth of the blood: now, as the internal abforbents fympathize with the external ones, thefe alfo, which during the hot fit drank up the thinner part of the bilc, or of other fecreted fluids, lofe their increafed activity before the gland lofes its increafed activity, at the decline of the hot fit; and the loofe dejections are produced from the fame caufe, that the increafed perfpiration flands on the furface of the fkin, from the increafed abforption ceafing fooner than the inereafed focretion.

The urine during the cold fit is in fmall quantity and pale, both from a deficiency of the fecretion and a deficiency of the abforption. During the hot fit it is in its ufual quantity, but very high coloured and turbid, becaufe a greater quantity had been fecreted by the increafed action of the kidneys, and alfo a greater quantity of its more aqueous part had been abforbed from it in the bladder by the inereafed action of the abforbents; and laftly, at the decline of the hot fit it is in large guantity and lefs coloured, or turbid, becaufe the abforbent veffels of the bladder, as obferved above, lofe their increafed action by fympathy with the cutaneous ones fooner than the feeretory veffels of the kidneys lofe their increafed activity. Hence the quantity of the fediment, and the colour of the urine, in fevers, depend much on the quantity fecreted by the kidneys, and the quantity abforbed from it again in the bladder : the kinds of fediment, as the lateritious, purulent, mucous, or

bloody

bloody fediments, depend on other caufes. It fhould be obferved, that if the fweating be increafed by the heat of the room, or of the bedclothes, a paueity of turbid urine will continue to be produced, as the abforbents of the bladder will have their activity increafed by their Sympathy with the vefiels of the fkin, for the purpole of fupplying the fluid expended.in peripiration.

The pulfe becomes ftrong and full owing to the inercafed irritability of the heart and arteries, from the accumulation of fenforial power during their quiefcence, and to the quicknefs of the return of the blood from the various glands and capillaries. This increafed action of all the fecretory veffels does not occur very fuddenly, nor univerfally at the fame time. The heat feems to begin about the centre, and to be diffufed from thence irregularly to the other parts of the fyftem. This may be owing to the fituation of the parts which firft became quiefcent and caufed the fever-fit, efpecially when a hardnefs or tumour about the præcordia can be felt by the hand; and henee this part, in whatever vifeus it is feated, might be the firft to regain its natural or increafed irriability.
3. It muft be hare noted, that, by the increafed quantity of heat, and of the impulfe of the blood at the commencement of the hot fit, a great increafe of ftimulus is indueed, and is now added to the increafed irritability of the fyftem, which the blood augments the violence of the movcments of the arterial and glandular fyftem in an increafing ratio. Thefe violent exertions fill produeing more heat and greater momentum of the moving fluids, till at length the fenforial power becomes wafted by this great fitimulus beneath its natural quantity, and predifpofes the fyftem to a feeond cold fit.

At length all thefe unnatural cxertions fpontancoufly fubfide with the increafed irritability that produced them; and which was itfelf produced by the preceding quiefcence, in the fane mamner as the eyc, on coming from darknefs into daylight, in a little time ccafes to be dazzled and pained, and gradually recovers its natural degree of irritability.
4. But if the increafe of irritability, and the confequent increafe of the ftimulus of heat and momentum, produce morc violent excrtions than thofe above defcribed; great pain arifes in fome part of the moving fyftem, as in the membranes of the brain, pleura, or joints; and ncw motions of the veffels are produced in confequence of this, pain, which are called inflammation; or delirium or ftupor arifes ; as explained in Sect. XXI. and XXXIII. : for the immediate effect is the fame, whether the great energy of the moving organs arifes from an increafe of fimulus or an increafc
increafe of irritability ; though in the former cufe the wafte of fenforial power leads to debility, and in the latter to health.

Recapitulation.

X . Thofe mufeles, which are lefs frequently exerted, and whofe actions are interrupted by fleep, acquire lefs aceumulation of fenforial power during their quiefcent ftate, as the mufeles of locomotion. In thefe mufcles after great exertion, that is, after great exhauftion of the fenforial power, the pain of fatigue enfues; and during reft there is a renovation of the natural quantity of fenforial power; but where the reft, or quiefcence of the mufcle, is long continued, a quantity of fenforial power becomes accimulated beyond what is neceffary; as appears by the uneafinefs occafioned by want of excrife; and whlieh in young animals is one caufe exciting them into action, as is fcen in the play of puppies and kittens.

But when thofe mufcles, which are habituated to perpetual actions, as thofe of the fiomaeh by the ftimulus of food, thofe of the veffels of the fkin by the ftimulus of heat, and thofe which conftitute the arteries and glands by the fimulus of the blood, become for a time quiefeent, from the want of their appropriated fimulis, or by their affociations with other quiefcent parts of tho
fyftem; a greater accumulation of fenforial power is aequired during their quiefeence, and a greater or quicker exhauftion of it is produced during their increafed action.

This accumulation of fenforial power from deficient action, if it happens to the ftomaeh from want of food, oceafions the pain of hunger; if it happens to the veffels of the fkin from want of heat, it oecafions the pain of cold; and if to the arterial fyftem from the want of its adapted ftimuli, many difagreeable fenfations are occafioned, fuch as are experienced in the cold fits of intermittent fevers, and are as various, as there are glands or membranes in the fyftem, and are generally termed univerfal uneafincis.

When the quiefcence of the arterial fyftem is not owing to defect of ftimulus as above, but to the defective quantity of fenforial power, as in the commencement of nervous fever, or irrilative fever with weak/pulfe, a great torpor of this fyftem is quickly induced; becaufe both the irritation from the ftimulus of the blood, and the affociation of the vafcular motions with each other, continue to excite the arteries into action, and thence quiekly exhauft the ill-fupplied vafeular mufcles; for to reft is death; and therefore thofe vafeular mufeles continue to proceed, though with feebler action, to the extreme of wearinefs or faintnefs : while nothing fimilar to this affects the locomotive mufcles, whofe actions are gene-
rally caufed by volition, and not much fubject either to irritation or to other kinds of affociations befides the voluntary ones, except indeed when they are excited by the lafh of flavery.

In thefe vafcular mufcles, which are fubject to perpetual action, and thencc liable to great accumulation of fenforial power during their quiefcence from want of ftimulus, a great incroafe of activity occurs, either from the renewal of their accuftomed ftimulus, or even from. much lefs quantities of ftimulus than ufual. This increafe of action conftitutes the hot fit of fever, which is attended with various increafed fecretions, with great concomitant heat, and general uneafinefs. The uneafinefs attending this hot paroxyfm of fever, or fit of exertion, is very different from that, which attends the previous cold fit, or fit of quiefcence, and is frequently the caufe of inflammation, as in pleurify, which is treated of in the next fection.

A fimilar effect occurs after the quicfeence, of our organs of fenfe; thofe which are not fubject to perpetual action, as the tafte and fmell, are lefs liable to an exuberant accumulation of fenforial power after their having for a time been inactive; but the eyc, which is in perpetual action during the day, becomes dazzled, and liable to inflammation after a temporary quiefcence.

Wherc the previous quiefcence has been owing to a defcet of fenforial power, and not to a. defect
defect of fimulus, as in the irritative fever with weak pulfe, a fimilar increafe of activity of the artcrial fyftem fueceeds, either from the ufual ftimulus of the blood, or from a ftimulus lefs than ufual; but as there is in general in the ee cafes of fever with weak pulle a deficiency of the quantity of the blood, the pulfe in the hot fit is weaker than in health, though it is fronger than in the cold fit, as explained in No. 2. of this fection. But at the fame time in thofe fevers, where the defect of irritation is owing to the defect of the quantity of fenforial power, as well as to the defect of ftimulus, another circumfance occurs; whieh confifts in the partial diftribution of it, as appears in partial flufhings, as of the face or bofom, while the extremities are cold; and in the increafe of partieular fecretions, as of bile, faliva, infenfible perfpiration, with great heat of the flin, or with partial fiweats, or diarrhœa.

There arc alfo many uncafy fenfations attending thefe increafed actions, which like thofe belonging to the hot fit of fever with ftrong pulfe, are frequently followed by inflammation, as in fearlet fever ; which inflammation is neverthelefs accompanied with a pulfe weaker, though quicker, than the pulfe during the remiffion or intermiffion of the paroxyfms, though ftronger than that of the previous cold fit.

From hence I conclude, that botli the cold and hot fits of fever are neceffary confequences of the perpetual
perpetual and ineeffant action of the arterial and glandular fyftem ; fince thofe mufcular fibres and thofe organs of fenfe, which are moft frequently exerted, become neceffarily moft affected both? with defect.and accumulation of fenforial power: and that hence fower-fis are not an effort of nature to relierve herfelf, and that therefore they fhould always be prevented or diminifhed as much as poffible, by any means which decreafe the gencral or partial vafcular actions, when they are greater, or by increafing them when they are lefs than in health, as deferibed in Sect. XII. 6.1.

Thus have I endeavoured to explain, and I hope to the fatisfaction of the candid and patient reader, the principal fymptoms or circumftances of fever without the introduction of the fupernatural power of fpafin. To the arguments in favour of the doctrinc of fpafm it may be fufficient to reply, that in the evolution of medical as well as of dramatie cataftrophe,

Nec Deus interfit, nifi dignus vindice nodus
Inciderit.
Hor.
XI. 1. Since I printed the above in the firft edition of this work, I am told, that the fpafmodic doctrine of fever has yet its adrocates; who believe that the coldnefs at the begiming of in. termittent fevers is owing to a fpafm of the cutancous veffels. But as the fkin is at that time lax and foft, the mufcular fibres of thofe cutancons
veffels cannot be in action or contraction, which conftitute fpafm. Whence we have the evidence both of our fight and touch againft this wild imagination.

Others have advanced, that this fpafmodic contraction of the cutancous veffels or pores confines the heat, or drives it to the heart; which in the hot fit of fever repels the heat again to the fkin by its reaction. Thofe, who efpoufe this doctrine, feem to conceive, that the particles of heat are as large as Thot-corns, or as the globules of blood; and not that it is an ethereal fluid, in which all things are immerfed, and by which all things are penetrated; an opinion which originated from Galen, and muft have been founded on a total ignorance of chemiftry, and natural philofophy. Others, I hear, ftill fuppofe cold to be a ftimiluis, not underftanding that it is fimply the abfence of heat; and that darknefs might as well be called a ffimulus to the eye, or hunger a fimulus to the fromach, as cold to our fenfe, which perceives heat; which is commonly confounded with our fenfe of touch, which perceives figure. The pain, which we experience on being expofed to a want of heat, which is termed chillnefs, or coldnefs; and the pain we experience in our organs of digeftion from the want of food, which is termed hunger; both arife from the inactivity of thofe veffels, which ought to be either perpetually, or at periodical
times fimulated into action. See Sect. XIII. 3.2. And the fhivering or actions of the fubcutancous mufcles, when we are cold, are in confequence of the pain, or voluntary exertion to relieve that pain, and originate from the want of ftimulus, not from the excefs of it.

In this age of reafon it is not the opinions of others, but the natural phænomena, on which thofe opinions are founded, which deferve to be canvaffed. And with the fuppofed exiftence of ghofs or apparitions, witcheraft, vampyrim, $a\{-$ trology, animal magnetifm, and Amcrican tractors, fuch theories as the above muft vanifh like the fuenery of a dream; as they confift of fuch combinations of ideas, as have no prototype or correfpondent combinations of material objects exifing in nature.

S E C T. XXXIII.

DISEASES OF SENSATION.

1. Motions excited by fenfation. Digefion. Generation. Pleafure of cxifence. Hypochondivacifm. 2. Pain introduced. Senfitive fevers of two kinds. 3. Two fonforial powers excerted in finfitive fovers. Size of the blood. Nervous fevers difingruifhed from putrid ones. The Septic and antifeptic theory. 4. Two kinds of delirium. 5. Other animals are lefs liable to delirium, cannot reccive our contagious difeafes, and are lefs liable to madnefs. II. I. Senfitive motions gencrated. 2. Infammation explained. 3. Its remote caufes from excefs of irritation, or of irritability, not from thofe pains which are owing to defect of in ritation. Nerw veffels produced, and much beat. 4. Pllrulent matter fecreted. 5. Contagion explaincd. 6. Reseived be. once. 7. If common matter be contagious? 8. Why fome contagions are received but once. 9. Why oibers may be received frequently. Contagions of fmall-pox: and meafles do not ait at the fame time. Trwo cafes of fuch patients. 10. The blood from patients in the fmallpox will not infoct others. Cafes of children thris inoculatrd. The variolous contagion is not received into the blood. It aits by fenfitive aflociation between the fomach and fkin. 11I. 1. Abforption of folids and fiuids. 2. Art of bealing velcers. 3. Mortification attended with lefs pain in sueak prople.
I. 1. As many motions of the body are excited and continued by irritations, fo others requirc,
quire, either conjuncly with thefe, or feparately, the plcafurable or painful fenfations, for the purpofe of producing them with due energy. Amongtt thefe the bufinefs of digetion fupplies: us with an inffance: if the food, which we fwal.. low; is not attended with agreeable fenfation, it digefts lefs perfectly; and if very difagreeable fenfation accompanies it, fuch as a naufeous idea, or very difguftful tafte, the digeftion beçomes impeded; or retrograde motions of the ftomach and. œefophagus fucceed, and the food is ejected.

The bufinefs of generation depends fo much on agreeable fenfation, that, where the object is difguftful, neither voluntary exertion nor irritation can effect the purpofe; which is alfo liable to be interrupted by the pain of fear or bafhful. nefs.

Befides the pleafure, which attends the irritations produced by the objects of luft and hunger, there feems to be a fum of pleafurable affection accompanying the various fecretions of the numerous glands, which conftitute the pleafure of life, in contradifinction to the tedium vita. This quantity or fum of pleafurable affection fcems to contribute to the due or energetic performance of the whole moveable fyftem, as well that of the heart and arterics, as of digeftion and of abforption; fince without the due quantity of pleafurable fonfation, flatulency and hypochondriacifm affect the inteftines, and a languor

[^0]fcizes the arterial pulfations and fecretions; as oceurs in great and continued anxiety of the mind.
2. Befides the febrile motions occafioned by irritation, defcribed in Sect. XXXII. and termed irritative fever, it frequently happens that pain is excited by the violence of the fibrous contractions; and other new motions are then fuperadded, in confequence of fenfation, whieh we fhall term febris fenfitiva, or fenfitive fever. It muft be obferved, that moft irritative fevers begin with a decreafed exertion of irritation, owing to defect of ftimulus; but that on the eontrary the fenfitive fevers or inflammations, generally begin with the increafed exertion of fenfation, às mentioned in Sect. XXXI. on temperaments: for though the cold fit, whieh introduces inflammation, commences with decreafed irritation, yet the inflammation itfelf eommences in the hot fit during the increafe of fenfation. Thus a common puftule; or phlegmon, in a part of little, fenfibility does not excite an inflammatory fever; but if the ftomaeh, inteftines, or the tender fubftance beneath the nails, be injured, great fenfation is produced, and the whole fyftem is thrown into that kind of cxertion, which conftitutes inflammation.

Thefe fenfitive fevers, like the irritative ones, refolve themfelves into thofe with arterial ftrength, and thofe with arterial debility, that is with excefs or defect of fenforial power; thefe may be
termed the febris fenfitiva pulfu forti, fenfitive fever with ftrong pulfe, which is the fynocha, or inflammatory fever; and the febris fenfitiva pulfu debili, fenfitive fever with weak pulfe, which is the typhus gravior, or putrid fever of fome writers.
3. The inflammatory fevers, which are here termed fenfitive fevers with ftrong pulfe, are generally attended with fome topical inflammation, as pleurify, peripneumony, or rheumatifm, which diftinguifhes them from irritative fevers with ftrong pulfe. The pulfe is ftrong, quick, and full; for in this fever there is great irritation, as well as great fenfation, employed in moving the arterial fyftem. The fize, or coagulable lymph, which appears on the blood, is probably an increaled fecretion from the inflamed internal lining of the whole arterial fyftem, the thinner part being taken away by the increafed abforption of the inflamed lymphatics.

The fenfitive fevers with weak pulfe, which are tormed putrid or malignant fevers, are diftinguifhed from irritative fevers with weak pulfe, called nervous fevers, defcribed in the laft fection, as the former confift of inflammation joined with debility, and the latter of debility alone. Hence there is greater heat and more florid colour of the lkin in the former, with petechix, or purple fpots, and aphthæ, or Aoughs in
the throat, and generally with previous contagion.

When animal matter dies, as a llough in the throat, or the mortified part of a carbunele, if it be kept moift and warm, as during its adhefion to a living body, it will foon putrefy. This and the origin of contagion from putrid animal fubftanees, feem to have given rife to the feptic and antifeptic theory of thefe fevers.

The matter in puftules and' uleers is thus liable. to become putrid, and to produce mierofeopic animaleula; the urine, if too long retained, may alfo gain a putrefeent fimell, as well as the alvine feees; but fome writers have gone fo far as to believe, that the blood itfelf in thefe fevers has finelt patrid, when drawn from the arm of the patient; but this feems not well founded; finee a fingle particle of putrid matter taken into the blood can produce fever, how can we conecive that the whole mafs could continue a minute in a putrid ftate without deftroying life? Add to this, that putrid animal fubfances give up air, as in gangrenes; and that henee if the blood was putrid, air fhould be given out, which in the blood-weffels is known to occafion immediate death.

In thefe fenfitive fevers with frong pulfe (or inflammations) there are two tenforial faculties concerned in producing the difeafe, viz. irritation and fenfation; atd lence, as their combined
bined action is more violent, the general quantity of fenforial power becomes further exhaufted during the exaccrbation, and the fyftem more rapidly weakened than in irritative fever with ftrong pulfe; where the firit of animation is weakened by but one mode of its exertion: fo that this febris fenfitiva pulfu forti (or inflammatory fever) may be confidered as the febris irritativa pulfu forti, with the addition of inflammation ; and the febris fenfitiva pulfu debili (or malignant fever) may be confidered as the febris irritativa pulfu debili (or nervous fever), with the addition of inflammation.
4. In thefe putrid or malignant fevers a deficiency of irritability accompanies the increafe of fenfibility ; and by this wafte of fenforial power by the excefs of fenfation, which was already too fmall, arifes the delirium and ftupor which fo perpetually attend thefe inflammatory fevers with arterial debility. In thefe cafes the voluntary power firft ceafes to act from deficiency of fenforial fpirit ; and the ftimuli from external bodies have no effect on the exhaufted fenforial power, and a delirium like a dream is the confcquence. At length the internal ftimuli ceafe to excitc fuffiecent irritation, and the fecretions are either not produced at all, or too parfimonious in quantity. Amongft thefe the fecietion of the brain, or production of the fenforial power; becomes deficient, till at laft all fenforial power ceafes, except what F 3
is juft neceffary to perform the vital motions, and a ftupor fuecceds; which is thus owing to the fame caufe as the preceding delirium exerted in a greater degree.

This kind of delirium is owing to a fufpenfion of volition, and to the difobedienee of the fenfes to external ftimuli, and is always oecafioned by great debility, or paucity of fenforial power; it is therefore a bad fign at the end of inflammatory fevers, which had previous artcrial firength, as rheumatifm, or pleurify, as it hews the prefence of great exhauftion of fenforial power in a fyftem, which laving lately been expofed to great excitement, is not fo liable to be ftimulated into its healthy action, either by additional fiimulus of food and medieines, or by the accumulation of fenforial power during its prefent torpor: In inflammatory fevers with debility, as thofe termed putrid fevers, delirium is fometimes, as well as ftupor, rather a favourable fign ; as lefs fenforial power is wafted during its continuance (fee Clafs II. 1.6. S.), and the confitution not having been previoufly expofed to excefs of fimulation, is more liable to be excited after previous quiefecnee.

When the fum of general pleafurable fenfation becomes too great, another kind of delirium fupervenes, and the ideas thus exeited are miftaken for the irritations of external objects: fuch a delirium is produced for a time by intoxieating drugs,
drugs, as fermented liquors, or opium : a permanent delirium of this kind is fometimes induced by the pleafures of inordinate vanity, or by the enthufiaftic hopes of heaven. In thefe cafes the power of volition is incapable of exertion, and in a great degree the external fenfes become incapable of perceiving their adapted ftimuli, becaufe the whole fenforial power is employed or expended on the ideas excited by pleafurable fenfation.

This kind of delirium is diftinguifhed from that which attends the fevers above mentioned from its not being accompanied with general debility, but fimply with excefs of pleafurable fenfation; and is therefore in fome meafure allied to madnefs or to reverie; it differs from the delirium of dreams, as in this the power of volition is not totally fufpended, nor are the fenfes preeluded from external ftimulation; there is therefore a degree of confiftency, in this kind of delirium, and a degree of attention to external objects, reither of which exifts in the delirium of fevers or in dreans.
5. It would appear, that the vafcular fyftems of other animals are lefs liable to be put into action by their general fum of pleafurable or painful fenfation; and that the trains of their ideas, and the mufcular motions ufually affociated with them, are lefs porverfully connected than in the human fyftem. For other animals neither weep,
nor fmile, nor laugh; and are hence feldorn fubject to delirium, as treated of in Sect. XVY. on Inftinct. Now as our epidemic and contagious difeafes are probably produced by difagreeable fenfation, and not fimply by irritation; there appears a reafon, why bruse animals are lefs iiable to epidemic or contagious difeafes; and fecondly, why none of our contagions, as the fin all-pox or meafles, can be communicated to them, though one of theirs, viz. the hydrophobia, as well as many of their poifons, as thofe of fnakes and of infects, communicate their deleterious or painful cffects to miankind.

Where the quantity of general painful fenfation is too great in the fyfem, inordinate voluntary exertions are produced either of our ideas, as in melancholy and madnefs, or of our mufcles, as in convulfion. From thefe maladies alfo brute animals are nuch more exempt than mankind, owing to their greater inaptitude to voluntary exertion, as mentioned in Scet. XVI. on Inftinct.

1I. 1. When any moving organ is excited into fuch violent motions, that a quantity of pleafurable or painful fenfation is produced, it frequently happens (but not always) that new motions of the affected organ are generated in confequence of the pain or pleafure, which are termed inflammation.

Thefe new motions are of a peculiar kind, tending to diftend the old, and to produce new fibres,
fibres, and thence to elongate the ftraight.mufcles, which lerve locomotion, and to form new veffels at the extremities or fides of the vafcular mufcles.
2. Thus the pleafurable fenfations produce an enlargement of the nipples of nurles, of the papille of the tongue, of the penis, and probably produce the growth of the body from its embryon fate to its maturity ; whilft the new motions in confequence of painful fenfation, with the growth of the fibres or veffels, which they occafion, are termed inflammation.

Hence when the ftraight mufcles are inflamed, part of their tendons at each extremity gain new life and fenfibility, and thus the mufcle is for a time elongated; and inflamed bones become foft, vafcular, and fenfible. Thus new veffels fhoot over the cornea of inflamed eyes, and into icirrhous tumours, when they become inflamed; and hence all inflamed parts grow together by intermixture, and inofculation of the new and old veffels.

The heat is occafioned from the increafed fecretions either of mucus, or of the fibres, which produce or elongate the veffels. The red colour is owing to the pellucidity of the newly formed veffels, and as the arterial parts of them are probably formed before their correfpondent venous parts.
3. Thefe new motions are excited either from
the increafed quantity of fenfation in confequence of greater fibrous contractions, or from increafed ienfibility, that is, from the increafed quantity of fenforial power in the moving organ. Hence they are induced by great external fimuli, as by wounds, broken bones; and by acrid or infectious materials; or by common ftimuli on thofe organs, which have been fome time quiefeent; as the ufual light of the day inflames the eyes of thofe, who have been confined in dungeons; and the warmth of a common fire inflames thofe, who have been previounly expofed to much cold.

But thefe new motions are never generated by that pain, which arifes from defeet of fimulus, as from hunger, thirft, cold, or inanition, with all thofe pains, whieh are termed nervons. Where thefe pains cxift, the motions of the affected part are leffened; and if inflammation fueceeds, it is in fome diftant parts; as coughs are caufed by coldnefs and moifture being long applied to the feet; or it is in confequence of the renewal of the fimulus, as of heat or food, which excites our organs into ftronger action after their temporary quiefcenec; as kibed heels after walking in fnow.
4. But when thefe new motions of the vafcular mufcles are exerted with greater violence, and thefe veffels are either clongated too much or too haftily, a new material is fecreted from their extremities, which is of various kinds according to
the peculiar animal motions of this new kind of gland, which fecretes it; fuch is the pus laudabile or common matter, the variolous matter, vencreal matter, catarrhous matter, and many others.
5. Thefc matters are the product of an animal procefs; they arc fecreted or produced from the blood by certain difeafed motions of the extremitics of the blood-veffels, and are on that account all of them contagious; for if a portion of any of thefe is tranfitted into the circulation, or perhaps only inferted into the fkin, or beneath the cuticle of a healthy perfon, its ftimulus in a certain time produces the fame kind of morbid motions, by which itfelf was produced; and hence a fimilar kind is generated. See Sect. XXXIX. 6. 1.
6. It is remarkable, that many of thefe contagious matters are capable of producing a fimilar difcale but once; as the fmall-pox and meanles; and I fuppofe this is trie of all thofe contagious difeafes, which are fpontaneounly cured by nature in a certain time; for if the body was capablc of receiving the difeafe a fecond time, the patient muft perpetually infect himfelf by the very matter, which he has himfclf produced, and is lodged about him; and hence he could never become free from the difeafe. Something fimilar to this is feen in the fecondary fever of the confluent fmall-pox; there is a grcat abforption of variolous matter, 2 very minute part of which would
give the genuinefmall-pox to another perfon; but here it only fimulates the fyficm into common fever; like that which common pus, or any other aerid material might oecafion.
7. In the pulmonary confumption, where common matter is daily abforbed, an irritative fever only, without new inflammation, is generally produced; which is terminated like other irritative fevers by fiveats or loofe ftools. Hence it does not appear, that this abforbed matter ahways acts as a contagious material producing frefh inflammation or new abfceffes. Though there is realon to believe, that the firft time any common. matter is abforbed, it has this effect, but not the fecond time, like the variolous matter above mentioned.

This aceounts for the opinion, that the pulmonary confumption is fometimes infections, whieh opinion was heid by the ancients, and continues in Italy at prefent; and I have myfelf feen three or four inftances, where a hufband and wife, who have flept together, and have thus much received each other's breath, who hare infected each other, and both died in confequence of the vriginal taint of only one of them. This alfo aecounts for the abfecfies in various parts of the body, that are fometimes produccd after the inoeulated fmall-pox is terminated; for this fecond abforption of variolous matter acts like common matter, and produces only irritative fever in thore children,
children, whofe conftitutions have already cxperienced the abforption of common matter ; and inflammation with a tendency to produce new abfeeffes in thofe, whofe conftitutions have not experienced the abforptions of common matter.

It is probable, that more certain proofs might have been found to fhew, that common matter is infectious the firft time it is abforbed, tending to produce fimilar abfeeffes, but not the fecond time of its abforption, if this fubject had been attended to.
8. Thefe contagious difeafes are very nuncrous, as the plague, fmall-pox, chicken por, meafles, fcarlet-fever, pemphigus, catarrh, chin:cough, venereal difeafe, itch, trichoma, tinéa: The infectious material does not feem to be dif: folved by the air, but only mixed with it perhaps in fine powder, which foon fubfides; finace many of thefe contagions can only be received by actuat contact; and others of them only at fimall diftances from the infucted perfon; as is evident from many porfons having been near patients of the fmall-pox without acquiring the difeafe.

The reafon, why many of thefe difeafes are received but once, and others repeatedly, is not well underfiood; if appears to me, that the confitution becomes fo accuftomed to the fimuli of thele infectious matcrials, by having once experienced them, that though irritative motions, as hectic fevers, may again be produced by them,
yet no fenfation, and in confequenee no general inflammation fueceeds; as difagreeable fmells or taftes by habit ceafc to be perecived; they continue indeed to excite irritative ideas on the organs of fenfe, but thefe are not fucceeded by fenfation.

There are many irritative motions, whieh were at firft fucceeded by fenfation, but which by frequent repetition ceafe to excite fenfation, as explained in Sect. XX. on Vertigo. And, that this circumftance exifts in refpect to infectious matter appears from a known fact; that nurfes, who have had the fmall-pox, are liable to experience fimall ulecrs on their arms by the contact of variolous matter in lifting their patients; and that when patients, who have formerly had the frinall-pox have bcen inoculated in the arm, a phlegmon, or inflamied fore, has fuceeeded, but no fubfequent fever. Which fhews, that the contagious matter of the fmall-pox has not loft its power of ftimulating the part it is applied to, but that the general fyftem is not affected in confequence. Sce Scction XII. 7. 6. XIX. 10.
9. From the accounts of the plague, virulent catarrh, and putrid dyfentery, it feems uneertain, whether thefe difeafes are expcrienced more than once; but the venereal difeafe and itch are doubtlefs repeatedly infectious; and as thefe difeafes are never cured fpontaneoufly, but require medicines, which act without apparent operation,
fome have furpected, that the contagious material produces fimilar matter rather by a chemical change of the fluids, than by an animal procefs; and that the fpecific medicines deftroy their virus by chemically combining with it. This opinion' is fuccefffully combated by Mr . Hunter, in his Treatife on Venereal Dileafe, Part I. c. i.

But this opinion wants the fupport of analogy: as there is no known procefs in animal bodies, which is purely chemical, not even digeftion; nor can any of thefe matter's be produced by chemical proceffes. Add to this, that it is probable, that the infects, obferved in the puftules of the itch, and in the ftools of dyfenteric $p a-$ tients, are the confequenees, and not the caufesof thefe difeafes. And that the fpecific medicines, which cure the itch, and lues venerea; as brimftone and mercury, act only by increafing: the abforption of the matter in the ulcufcles of thofe difeafes, and thence difpofing them to heal; which would otherwife eontinue to' fpread.

Why the venereal difeafe, and itch, and tinea, or fcald head, are repeatedly contagious, while, thofe contagions attended with fever can be received but once, feems to depend on their being . rather local difeafes than univerfal ones, and are hence not attended with fever, except the purulent fever in their laft ftages, when the patient is deftroyed
deftroyed by them. On this account the whole of the fyftem does not become habituated to thefe morbid actions, fo as to ceafe to be affected with fenfation by a repetition of the contagion. Thus the contagious matter of the venereal difeafe, and of the tinea, affects the lymphatic glands, as the inguinal glands, and thofe about the roots of the hair and neck, where it is arrefted, but does not feem to affect the blood veffels, fince: no fever enfues.
Hence it would appear, that thefe kinds of contagion are propagated not by means of the circulation, but by fympathy of diftant parts with each other ; fince if a diftant part; as the palate, fhould be excited by fenfitive affociation into the fame kind of motions, as the parts originally affected by the contact of infectious matter ; that diftant part will produce the fame kind of infectious matter; for every fecretion from the blood is formed from it by the peenliar motions of the fine extremities of the gland, which fecretes it; the various fecreted fluids, as the bile, faliva, gaftrie juice, not previoufly exifting, as fueh, in the blood-veffels.

And this peculiar fympathy between the genitals and the throat, owing to fenfitive affociation, appears not only in the production of vencreal ulcers in the throat, but in a variety of other infances, as in the mumps, in the hydrophobia, fome
fome coughs, ftrangulation, the production of the bcard, change of voice at puberty. Which are further deleribed in Clafs IV. 1. 2. 7.

To evince that the production of fuch large quantities of contagious matter, as are feen in fome variolous patients, fo as to cover the whole fkin almoft with puftules, docs not arife from any chemical fermentation in the blood, but that it is owing to morbid motions of the fine extremities of the capillaries, or glands, whether thefe be ruptured or not, appears from the quantity of this malter always correfponding with the quantity of the fever; that is, with the violent exertions of thofe glands and capillaries, which are the terminations of the arterial fyftem.

The truth of this theory is cvinced further by a circuinftance oblerved by Mir. J. Hunter, in his Treatife on Venereal Difeafe; that in a pationt, who was inoculated for the fmall-pox, and who appearcd afterwards to have been previoufly infected with the meaflcs, the progrefs of the fmallpox was delayed till the meafles had run their courfe, and that then the fimall-pox went through its ufual periods.

Two fimilar cafes fell under my care, which I fhall herc rclate, as it confirms that of M_{r}. Hunter, and contributes to illuffrate this part of the theory of contagious difeafes. I have tranfcribed the particulars from a letter of N r. Lightwood, of Yoxal, the furgeon who daily attended

[^1]G
them,
them, and at my requeft, after I had feen them, kept a kind of journal of their cafcs.
Mifs H. and Mifs L. two fifters, the one about four and the other about thrce years old, were inoculated Feb. 7, 1791. On the 10th there was a rednefs on both arms difcernible by a glafs. On the 11 th theirCarms were fo much inflamed, as to leave no doubt of the infection having taken place. On the 12th lefs appearance of inflammation on their arms. In the evening Mifs L. had an eruption, which refembled the meafles. On the 13th the cruption on Mifs L. was very full on the face and breaft, like the meafles, with confiderable fever. It was now known, that the meafles were in a farm houfe in the neighbourhood. Mifs H.'s arm lefs inflamed than yefterday. On the 14 th Mifs L.'s fever great, and the eruption univerfal. The arm appears to be hacaled. Mifs H.'s arm fomewhat redder. They were now put into feparate rooms. On the 15 th Mifs L.'s arms as yefterday. Eruption continues. Mifs H.'s arms have varied but little. 16th, the eruptions on Mifs L. are dying away, her fever gone. Begins to have a little rednets in one arm at the place of inoculation. Mifs H.'s arms get redder, but fhe has no appearance of complaint. 20th, Mifs L.'s arms have advanced flowly till this dáy, and now a few puftules appear. Mifs H.'s arm has made little progrefs from the 16 th to this day, and now fhe has fome fever. 21 ff ,

Mifs L. as yefterday. Mifs H . has much inflammation, and an increafe of the red circle on one arm to the fize of half-a-crown, and had much fever at night, with fetid breath. 22d, Mifs L.'s puftules continue advancing. Mifs H.'s inflammation of her arm and red circle increafes. A few red fpots appear in different parts with fome degree of fever this morning. 23d, Mifs L. has a larger crop of puftules. Mifs H. has fmall puftules and great inflammation of her arms, with but one puftule likely to fuppurate. After this day they gradually got well, and the puftules difappeared.

In one of thefe cafes the meafles went through their common courfe with milder fymptoms than ufual, and in the other the meally contagion feemed juft fufficient to ftop the progrefs of variolous contagion, but without itfelf throwing the conflitution into any diforder. At the fame time both the mealles and fmall-pox feem to have been rendered milder. Does not this give an idea; that if they were both inoculated at the fame time, that neither of them might affect the patient?

From thefe cafes I contend, that the contagious matter of thefe difeafes does not affect the conftitution by a fermentation, or chemical change of the blood, becaufe then they muft have proceeded together, and have produced a third fomething, not exactly fimilar to either of them:

G2 but
but that they produce new motions of the cutaneous terminations of the blood-veffels, which for a time proceed daily with inereafing activity, like fome paroxyfins of fever, till they at length fecrete or form a fimilar poifon by thefe unnatural actions.

Now as in the meafles one kind of unnatural motion takes place, and in the fmall-pox another kind, it is eafy to conceive, that there different kinds of morbid motions cannot exift together ; and thereforc, that that which has firft begun will continue till the fyftem becomes habituated to the ftimulus which occafions it, and has ceafed to be thrown into action by it; and then the other kind of fimulus will in its turn produce fever, and new kinds of motions peculiar to itfelf.
10. On further confidering the action of contagious mattcr, fince the former part of this work was fent to the prefs; where I have afferted, in Scct. XXII. 4. 3. that it is probable, that the variolous matter is diffufed through the blood; I prevailed on my friend Mr. Power, furgeon at Bofworth, in Leicefterfhire, to try, whether the fmall-pox could be inoculated by ufing the blood of a variolous patient inftead of the matter from the puftules; as I thought fueh an cxperiment might throw fome light at leaft on this intercfting fubject. The following is an extract from his letter:-
"March 11, 1793. I inoculated two children, who had not had the fmall-pox, with blood; which was taken from a patient on the fecond das after the eruption commenced, and before it was completed. And at the fame time I inoculated mylelf ivith blood from the fame perfon, in order to compare the appearances, which might arife in a perfon liable to receive the infection, and in one not liable to receive it. On the fame day I inoeulated four other children liable to itceive the infection w th blood taken from another perfon on the fourth day after the commencoment of the eruption. The patients from whom the blood was taken had the difeafe mildly, but had the moft puftules of any I could felect from twenty inoculated patients; and as much of the blood was infinuated under the cuticle as I could introduce by elevating the fkin without drawing blood; and three or four fuch punctures werc made in each of their arms, and the blood was ufed in its fluid fate.
"As the appearances in all thefe patients, as well as in nyfelf, were fimilar, I fhall only mention them in gencral terms. March 13. A night fubcuticular difcoloration, with rather a livid appearance, without forcnefs or pain, was vifible in them all, as well as in my own hand. 15. The difcoloration fomervhat lefs, without pain or forenefs. Some patients inoculated on the fame day with variolous matter have confiderable inflam-
mation. 17. The difcoloration is quite gone in them all, and from my own hand, a dry mark only remaining. And they were all inoculated on the 18 th, with variolous matter, which produced the difcafe in them all."

Mr. Power afterwards obfcrves, that, as the patients from whom the blood was taken had the difeafe mildly, it may be fuppofed, that though the contagions matter might be mixed with the blood, it might ftill be in too dilute a fate to convey the infcetion ; but adds at the fame time, that he has diluted recent matter with at leaft five times its quantity of water, and which has ftill given the infcetion; though he has fometimes diluted it fo far as to fail.

The following expcriments were inftituted at my requeft by my friend Mr . Hadley, furgeon in Derby, to afccrtain whether the blood of a perfon in thie fmall-pox be capable of communicating the difcafe. "Experiment Ift. October 18 th, 1793. I took fome blood from a vein in the arm of a perfon who had the fmall-pox, on the fecond day of the eruption, and introduced a fimall quantity of it immediately with the point of a lancet between the fearf and true fkin of the right arm of a boy nine years old in two or three different places; the other arm was inoculated with variolous matter at the famc time.
" 19 th. The punctured parts of the right arm were furrounded with fome degree of fubcuticular
cular inflammation. 20th. The inflammation more confiderable, with a flight degree of itching, but no pain upon preffure. 21 ft . Upon examining the arm this day with a lens, I found the inflammation lefs extenfive, and the rednefs changing to a deep yellow or orange-colour. 22d. Inflammation nearly gone. 23d. Nothing remained, except a flight difcoloration and a little fcurfy appearance on the punctures. At the fame time the inflammation of the arm inoculated with variolous matter was increafing faft, and he had the difeafe mildly at the ufual time.
"Experiment 2d. I inoculated another child at the fame time and in the fame manner, with blood taken on the firft day of the eruption; but as the appearance and effects were fimilar to thofe in the preceding experiment, I fhall not relate them minutely.
"Experiment 3d. October 20th. Blood was taken from a perfon who had the fmall-pox, on the third day of the eruption, and on the fixth from the commencement of the eruptive fever. I introduced fome of it in its fluid fate into both arms of a boy feven years old. 21. There appeared to be fome inflammation under the cuticle, where the punctures were made. 22d. Inflammation more confiderable. 23d. On this day the inflammation was fomewhat greater, and the cuticle rather elevated.
"24th. Inflammation much lefs, and only a
brown or orange-colour remained. 2 ith. Scarccly any difcoloration left. On this day he was inoculated with variolous matter, the progrefs of the infection went on in the ufual way, and he had the fimall-pox very favourably.
"At this time I was requelted to inoculate a young perfon, who was thought to have had the fmall-pox, but his parcnts were not quite ccrtain; in one arm I introduced variolous matter, and in the other blood, taken as in experiment 3 d . On the fecond day after the operation, the punctured parts were inflamed, though I think the arm in which I had inferted variolous matter was rather more fo than the other. On the third the inflammation was increafed, and looked much the fame as in the preceding experiment. 4th. The inflammation was much diminifhed, and on the 5 th almoft gonc. He was expofed at the fame time to the natural infection, but has continucd perfectly well.
"I have frequently obferved (and believe moft practitioners have done the fame), that if variolous matter be inferted in the arm of a perfon who has previounly had the fmall-pox, the inflammation on the fccond or third day is much greater, than if they had not had the difeafe, but on the fourth or fifin it difappears.
"On the 23d i introduced blood into the arms of three more chifdren, taken on the third and fourth days of the cruption. The appearances
were much the fame as mentioned in experiments firf and thicd. They werc afterwards inoculated with varolous matter, and had the difeafe in the regnlar way.
"The above experiments were made with blool taken from a fmall vein in the hand or foot of three or four different patients, whom I had at that time under itoculation. They were felected frum 160 , as having the greateft number of puftules. The part was wafhed with warm water before the blood was taken, to prevent the poffibility of any matter being mixed with it from the furface."

Shall we conclude from hence, that the variolous matter never enters the blood-veffels; but that the morbid motions of the veffels of the flkin around the infertion of it continue to increafe in a larger and larger circle for fix or feven days; that then their quantity of morbid action becomes great enough to produce a fever-fit, and to affect the ftomach by affociation of motions? and finally, that a fecond affociation of motions is produced between the ftomach and the other parts of the fkin, inducing them into morbid actions fimilar to thofe of the circle round the infertion of the variolous matter? Many more experiments and obfervations are required before this important queftion can be fatisfactorily anfwered.
-It may be adduced, that as the matter inferted into
into the 0 in of the arm frequently fwells the lymphatic in the axilla, that in that circumftance it feems to be there arrefted in its progrefs, and cannot be imagined to enter the blood by that lymphatic gland till the fwelling of it fubfides. Some other phænomena of the difeafe are more eafily reconcilcable to this theory of fympathetic motions than to that of abforption; as the time taken up between the infertion of the matter, and the operation of it on the fyftem, as mentioned above. For the circle around the infertion is feen to increafe, and to inflanc ; and I believe, undergoes a kind of diurnal paroxyfm of torpor and palenefs with a fucceeding increafe of action and colour, like a topical fever-fit. Whereas if the matter is conceived to circulate for fix or feven days with the blood, without producing diforder, it ought to be rendered milder, or the blood-veffels more familiarized to its acrimony.

It is much cafier to conceive from this doctrine of affociated or fympathetic motions of diftant parts of the fyftem, how it happens, that the variolous infection can be received but once, as before explained; than by fuppofing, that a change, is cffected in the mals of blood by any kind of fermentative procefs.

The curious circumftance of the two contagions of fmall-pox and meafles not acting at the fame time, but one of them refting or fufpending its action till that of the other ceafes, may be much
much eafier explained from fympathetic or affociated actions of the infected part with other parts of the fyftem, than it can from fuppofing the two contagions to enter the circulation.

The fkin of the face is fubject to more frequent viciffitudes of heat and cold, from its expofure to the open air, and is in confequence more liable to fenfitive affociation with the ftomach than any other part of the furface of the body, becaufe their actions have been more frequently thus affociated. Thus in a furfeit from drinking cold water, when a perfon is very hot and fatigued, an eruption is liable to appear on the face in confequence of this fympathy. In the fame manner the rofy eruption on the faces of drunkards more probably arifes from the fympathy of the face with the ftomach, rather than between the face and the liver, as is generally fuppofed.

This fympathy between the fomach and the fkin of the face is apparent in the eruption of the fmall-pox; fince, where the difeafe is in confiderable quantity, the eruption on the face firft fucceeds the ficknefs of the ftomach. In the natural difeafe the ftomach feems to be frequently primarily affected, either alone or along with the tonfils, as the matter feems to be only diffufed in the air, and by being mixed with the faliva, or mucus of the tonfils, to be fwallowed into the ftomach.

After fome days the irritative circles of motions become difordered by this new fumatus, whieh acts upon the mucous lining of the ftomach; and fieknefs, vertigo, and diurnal fever fueceed. Tliefe difordered irritative motions become daily increafed for tivo or three days, and then by their inereafed action certain fenfitive motions, or inflammation, is produced, and at the next cold fit of fever, when the ftomaeh recovers from its torpor, an inflammation of the external fkin is formed in points (which afterwards fuppurate), by fenfitive affociation, in the fame manner as a cough is produced in confequence of expofing the feet to cold, as deferibed in Sect. XXV. 1. 1. and Clafs IV. 2. 1. 7. If the inoeulated fkin of the arm, as far as it appcars inflamed, was to be eut out, or deftroyed by cauftic, before the fever eommenced, as fuppofe on the fourth day after inoculation, would this prevent the difeafe? as it is fuppofed to prevent the hydrophobia.
III. 1. Where the new veffels, and enlarged old ones, which conftitute inflammation, are not fo hafiily difiended as to burft, and form a new kind of gland for the fecretion of matter, as above mentioned; if fueh eircumftanees happen as diminifh the painful fenfation, the tendeney to growth ceafes, and by and by an abforption commenees, not only of the fuperabundant quantity of fluids depofited in the inflamed part, but of
the folids likewife, and this even of the hardef kind.

Thus during the growth of the fecond fet of teeth in children, the roots of the firf fet are totally abforbed, till at length nothing of them remains but the crown; though a few weeks before, if they are drawn immaturely, their roots are found complete. Similar to this Mr: Hunter has obferved, that where a clead piece of bone is to exfoliate, or to feparate from a living one, the dead part does not putrefy, but remains perfectly found, while the furface of the living part of the bone, which is in contact with the dead part, becomes abforbed, and thus effects its feparation. Med. Comment. Edinb. V. J. 425. In the fame manner the calcareous matter of gouty concretions, the coagulable lymph depofited on inflamed membranes in rheumatifm and extravafated blood become abforbed; which are all as folid and as indiffolable materials as the new veffels produced in inflammation.

This abforption of the new veffels and depofited fluids of inflamed parts is called refolution: it is produced by firft ufing fuch internal means as decreafe the pain of the part, and in confequience its` new motions, as repeated bleeding, cathartics, diluent potations, and warm bath.

After the veffcls are thus cmptied, and the abforption of the new veffels and depofited fluids is
evidently begun, it is much promoted by fimulating the part externally by folutions of lead, or other metals, and internally by the ,bark, and finall dofes of opium. Hence when an ophthalmy begins to become paler, any acrid eye-water, as a folution of fix grains of white vitriol in an ounce of water, haftens the abforption, and clears the eye in a very fhort time. But the fame application ufed a few days fooner would have increafed the inflammation. Hence after evacuation opium in fmall dofes may contribute to promote the abforption of fluids depofited on the brain, as obferved by Mr. Bromfield in his treatife of furgery.
2. Where an abfcefs is formed by the rupture of thefe new veffels, the violence of inflammation ceafes, and a new gland feparates a material called pus: at the fame time a lefs degree of inflammation produces new veffels ealled vulgarly proud flefh; which, if no bandage eonfines its growth, rior any other circumflance promotes abforption in the wound, would rife to a great height above the ufual fize of the part.

Hence the art of healing ulcers confifts in producing a tendeney to abforption in the wound greater than the depofition. Thus when an illconditioned ulcer feparates a copious and thin difcharge, by the ufe of any ftimulus, as of falts of lead, or mercury, or copper externally applied,
the difcharge becomes diminifhed in quantity, and becomes thicker, as the thinner parts are firft abforbed.

To which in ulcerations of the lungs, and in fome catarrhs, a pertinacious abftinence from fluids has been recommended, as well as in dropfies, and diabetes, which in the former as well as in the latter, may have a tendency to increafe abforption from the affected parts, and may thus be moderately employed with advantage; but may have a dangerous tendency if ufed to an extreme, by inducing too great thirft, and confequent fever or inflammation. Lower de $\mathrm{Ca}-$ tarrhis. Davidfon on Pulmonary Syftem. Rollo on Diabetes.

But nothing fo much contributes to increafe the abforption in a wound as covering the whole limb above the fore with a bandage, which fhould be fpread with fome plafter, as with emplaftrum de minio, to prevent it from nlipping. By this artificial tightnefs of the fkin, the arterial pulfations act with double their ufual power in promoting the afcending current of the fluid in the valvular lymphatics.

Internally the abforption from ulcers fhould be promoted firft by evacuation, then by opium, bark, mercury, fteel.
3. Where the inflammation proceeds with greater violence or rapidity, that is, when by the painful
painful fenfation a more inordinate activity of the organ is produced, and by this great activity an additional quantity of painful fenfation follows in an inereafing ratio, till the whole of the fenforial power, or fpirit of animation, in the part becomes exhaufted, a mortification cofues, as in a carbuncle, in inflammations of the bowels, in the extremities of old people, or in the limbs of thofe who are brought near a fire after laving been mueh benumbed with cold. And fion hence it appears, why weak people are more fubject to mortification than frong oncs, and why in weak pertons lefs pain will produce mortification, namely, becaufe the fenforial power is founer exhaufted by any excefs of activity. I remember feeing a gentleman who had the preeeding day travelled two ftages in a chaife with what he termed a bearable pain in his bowels; which when I faw him had ceafed rather fuddenly, and without a paffage through him; his pulfe was then weak, though not very quick; but as nothing which he fwallowed would continue in his fomach many minutes, I concluded that the bowel was mortified; he died on the next day. It is ufual for patients finking under the fmall-pox with mortified puftules, and with purple fpots intermixed, to complain of no pain, but to fay they are pretty well to the laft moment.

Recapitulation.

IV. When the motions of any part of the fyftem, in eonfcquence of previous torpor, are performed with more encrgy than in the irritative fevers, a difagrecable fenfation is produced, and new actions of fome part of the fyftem commence in confcquence of this fenfation conjointly with the irritation : which motions conftitute inflammation. If the fever bc attended with a ftrong pulfe, as in pleurify, or rheumatifm, it is termed fynocha fenfitiva, or fenfitive fever with ftrong pulfe; which is ufually termed inflammatory fever. If it be attended with weak pulfe, it is termed typhus fenfitivus, or fenfitive fever with weak pulfc, or typhus gravior, or putrid malignant fever.

The fynocha fenfitiva, or fenfitive fever with ftrong pulfe, is generally attended with fome topical inflammation, as in peripneumony, hepatitis, and is accompanied with much coagulable lymph, or fize; which rifes to the furfaee of the blood, when taken into a bafon, as it cools; and which is believed to be the increafed mueous fecretion from the eoats of the arteries, infpiffated by a greater abforption of its aqueous and faline part, and pcrhaps changed by its dclay in the circulation.
The typhus fenfitivus, or fenfitive fever with vol. ir.
weak pulfe, is frequently attended with delirium, which is caufed by the deficiency of the quantity of fenforial power, and with variety of cutancous eŕuptions.

Inflammation is caufed by the pains occafioned by excets of action, and not by thofe pains which arc occafioned by defect of action. Thefe morbid actions, which are thus prorluced by two fenforial powers, viz. by irritation and fenfation, fecrete now living fibres, which elongate the old veffels, or form ncw ones, and at the fame time much heat is evolved from thefe combinations. By the rupture of theie veffels, or by a new conffruction of their apertures, purulent matters are fecreted of various kinds; which are infectious the firft time they are applied to the fkin beneath the culicic, or fivallowed with the faliva into the ftomach. This contagion acts not by its being abforbed into the circulation, but by the fympathies, or affociated actions, between the part firft ftimulated by the contagious matter and the other parts of the fyftem. Thus in the natural fmallpox the contagion is fwallowed with the faliva, and by its ftimulus inflames the flomach; this variolous inflammation of the fromach increafes every day, like the circle round the puncture of an inoculated arm, till it becomes great enough to diforder the circles of irritative and fenfitive motions, and thus produces fever fits, with fickncfs and vomiting. Lafly, after the cold paroxyfm,
yfm, or fit of torpor, of the ftomach has increafed for two or three fucceffive days, an inflammation of the fkin commences in points; which generally firft appear upon the face, as the affociated actions butween the flin of the face and that of the ftomach have been more frequently exerted together than thofe of any other parts of the external furface.

Contagious matters, as thofe of the meafles and fmall-pox, do not act upon the fyftem at the fame time; but the progrefs of that which was laft received is delayed, till the action of the former infection ceafes. All kinds of matter, even that from common ulcers, are probably contagious the firft time they are inferted beneath the cuticle or fwallowed into the ffomach; that is, as they were formed by certain morbid actions of the extremities of the veffels, they have the power to excite fimilar morbid actions in the extremities of other veffels, to which they are applied; and thefe by fympathy, or affociations of motion, excite fimilar morbid actions in diffant parts of the fyftem, without entering the circulation; and hence the blood of a patient in the fmall-pox will not give that difeafe by inoculation to others.

When the new fibres or veffels become again abforbed into the circulation, the inflammation ceafes; which is promoted, after fuffieient evacuations, by external ftimulants and bandages: but where the action of the veffels is very great, a

100 DISEASES Sect. XXXIII. 4. 1. mortification of the part is liable to enfuc, owing to the exhauftion of fenforial power ; which however occurs in weak people without much pain, and without very violent previous inflammation; and, like partial paralyfis, may be efteemed one mode of natural dcath of old people, a part dying before the whole.

SECT. XXXIV.

DISEASES OF VOLITION.

I. I. Volition defined. Motions termed ineroluntary are caufed by volition. Defires oppofed to cach other. Delibcration. Afs between two bay-cocks. Saliva fwallowed againft one's defire. Voluntary motions difingzifhed from thofe affociated with Senfitive motions. 2. Pains from excefs, and from deferf of motion. No pain is folt during vebement voluntary exertion; as in cold fits of ague, labour-pains, firangury, tenefmus, vomiting, refteffnefs in fevers, convulfion of a wounded mufcle. 3. Of bolding the breath and fereaming in pain; why frwine and dogs ory out in pain, and not Bocp and borfes. Of grinning and biting in pain; why mad animals bite others. 4. Epileptic convulfions explained, why the fits begin with quivering of the under jarv, biting the tongue, and jetting the tecth; why the convulfive motions are alternately relaxed. The phrenomenon of laughter explained. Wby children cannot tickle themfelves. How fome have died from immoderate laughter. 5. Of cataleptic Jpafms, of the locked jaw, of painful cramps. 6. Synsope explained. Why no external objects are perceived in fyncope. 7. Of palfy and apoplexy from violent exertions. Cafe of Mrs. Scot. From dancing, fcating, fruimming. Cafe of Mr. Nairn. Why palfies are not always immediately preceded by violent excrtions. Pally and epilepfy from difeafed livers. Why the righe arm more frequently paralytic than the left. How paralytic limbs regain their motions.

$$
113
$$

II. Difinfes
11. Difeafes of the fenfual motions from exce/s or defeer of voluntary cxertion. 1. Madne/s. 2. Difinguibed from delivium. 3. Why mankind more liable to infanity than -brutes. 'Supticion. Want of Bame, and of cleanlincfs. 5. They bear cold, bunger, and fatigue. Cbarles XII. of Sweden. 6. Pleafurable delirium, and infanity. Cbild riding on a fick. Pains of martyrdom not felt. 7. Dropfy. 8. Infammation cured by infanity. III. I. Pain relieved by reveric. Reverie is an escrition of voluntary and fenfitive notions. 2. Cafe of reverie. 3. Lady fuppofed to bave two fouls. 4. Methods of relieving pain.
I. 1. Before we commence this Section on Difeafed Voluntary Motions, it may be neceffary to premife, that the word volition is not ufed in this work exactly in its common acceptation. Volition is faid in Seciion V..to bcar the fame analogy to defire and averfion, which fenfation does to pleafure and pain. And hence that, when defire or averfion produces any action of the mufcular fibres, or of the organs of fenfe, it is termed volition; and the actions produced in confequence are termed voluntary actions. Whence it appears, that motions of our mufcles or ideas may be produced in confequence of defire or averfion without our having the power to prevent them, and yet thefe motions may be tcrmed voluntary, according to our definition of the word; though in common language they would be called involuntary.

The objects of defire and averfion are gencral-
ly at a diftancc, whereas thofe of pleafure and pain are immediately acting upon our organs. Hence, bcfore defire or averfion is exerted, fo as to caufe any actions, there is generally time for deliberation; which confifts in difcovering the means to obtain the object of dcfire, or to avoid the object of averfion; or in examining the good or bad confequences, which may refult from them. In this cafe it is evident, that we have a power to delay the propofed action, or to perform it; and this power of choofing, whether we fhall act or not, is in common language expreffed by the word volition, or will. Whercas in this work the word volition means fimply the active ftate of the fenforial faculty in producing motion in confequence of defire or averfion: whether we have the power of reftraining that action, or not; that is, whether we exert any actions in confequence of oppofitc defires or averfions or not.

For if the objects of defire or averfion are prefent, there is no neceffity to inveffigate or compare the means of obtaining them, nor do we always deliberate about their confequences; that is, no deliberation neceffarily intervenes, and in confequence the power of choofing to act or not is not exerted. It is probable, that this two-fold ufe of the word volition in all languages has confounded the metaphyficians, who have difputed about free will and neceffity. Whercas from the
above analyfis it would appear, that during our fleep, we ufe no voluntary exertions at all; and in our waking hours, that they are the confequenee of defire or averfion.

To will is to act in confequence of defire ; but to defire means to defire fomething, even if that fomething be only to beeome free from the pain, which eaufes the defire ; for to defire nothing is not to deffre ; the word defire, therefore, ineludes both the action and the object or motive; for the object and motive of defire are the fame thing. Hence to defire without an object, that is, without a motive, is a foleeifm in language. As if one fhould afk, if you could eat without food, or breathe without air.

From this account of volition it appears, that convulfions of the mufeles, as in epileptic fits, may in the common fenfe of that word be termed involuntary; becaufe no deliberation is interpofed between the defire or averfion and the eonfequent action; but in the fenfe of the word, as above defined, they belong to the clals of voluntary motions, as delivered in Vol. II. Clafs III: If this ufe of the word be difcordant to the ear of the reader, the term morbid voluntary motions, or motions in confequence of averfion, may be fubftituted in its ftead.

If a perfon has a defire to be cured of the ague, and has at the fame time an averfion (or contrary defire (to fwallowing an ounce of Peruvian bark;
he balanees defire againft defire, or averfion againift averfion ; and thus he acquires the power of choofing, which is the common acceptation of the word roilling. But in the cold fit of ague, after having difcovercd that the act of fhuddering, or exerting the fubcutancous mufcles, relieves the pain of cold; he immediately exerts this act of volition, and fhudders, as foon as the pain and confequent averfion return, without any deliberation intervening ; yet is this act, as well as that of fivallowing an ounce of the bark, caufed by volition; and that even though he endeavours in vain to prevent it by a weaker contrary volition. This recalls to our minds the ftory of the hungry afs between two hay-ftacks, where the two defires are fuppofed fo exactly to counteract each other, that he goes to neither of the facks, but perifhes by want. Now as two equal and oppofite defires are thus fuppofed to balance each other, and prevent all action, it follows, that if one of thefe hay-ftacks was fuddenly removed, the afs would irrefiftibly be hurried to the other, which in the common ufe of the word might be called an involuntary act ; but which, in our acceptation of it, would be claffed amongft voluntary actions, as above explained.

Hence to deliberate is to compare oppofing defires or averfions, and that which is the moft interefting at length prevails, and produces action. Similar to this, where two pains oppofe each
other, the ftronger or more interefting one produces action; as in pleurify the pain from fuffocation would produce expanfion of the langs, but the pain occafioned by extending the inflamed membrane, which lines the cheft, oppofes this expanfion, and one or the other alternately prevails.

When any one moves his hand quickly near another perfon's cyes, the eye lids inftantly clofe; this act in common language is termed involuntary, as we have not tine to deliberate or to exert any contrary defire or averfion, but in this work it would be termed a voluntary act, becaule it is caufed by the faculty of volition, and after a few trials the nictitation can be prevented by a contrary or oppofing volition.

The power of oppofing volitions is beft exemplified in the ftory of Mutius Scævola, who is faid to have thruft his hand into the fire before Porcenna, and to have fuffered it to be confumed for having failed him in his attempt on the life of that general. Here the averfion for the lofs of fame, or the unfatisfied defire to ferve his country, the too prevalent enthufiafms at that time, were more powerful than the defire of withdrawing his hand, which muft be occafioned by the pain of combuftion; of thefe oppofing volitions

Vincit amor patriæ, laudumque immenfa cupido.

If any one is told not to fwallow his faliva for a minute, he foon fivallows it eontrary to his will, in the eommon fenfe of that word; but this alfo is a voluntary action, as it is performed by the faeulty of volition, and is thus to be underftood. When the power of volition is exerted on any of our fenfes, they beeome more acute, as in our attempts to hear fmall noifes in the night. As explained in Scetion XIX. 6. Henee by our attention to the fauees from our defire not to fivallow our faliva; the fauces beeome more fenfible ; and the ftimulus of the faliva is followed by greater fenfation, and eonfequent defire of fivallowing it. So that the defire or volition in confequence of the increafed fenfation of the faliva is more powerful, than the previous defire not to fiwallow it. See Vol. II. Deglititio invita. In the fame manner if a modeft man wifhes not to want to make water, when he is confined with ladies in a eoach or an affembly-room; that very act of volition induces the eireumftance, which he wifhes to avoid, as above explained; infomueh that I once faw a partial infanity, whieh might be ealled a voluntary diabetes, which was oceafioned by the fear (and confequent averfion) of not being able to make water at alt.

It is further neeeffary to obferve here, to prevent any confufion of voluntary, with fenfitive, or affociate motions, that in all the inftances of violent efforts to relicve pain, thofe cfforts are at
firft voluntary exertions; but after they have been frequently repeated for the purpofe of relieving eertain pains, they become affociated with thofe pains, and ecafe at thofe times to be fubfervient to the will; as in eoughing, fneezing, and ftrangury. Of thefe motions thofe which contribute to remove or diflodge the offending eaufe, as the actions of the abdominal mufcles in parturition or in vomiting, though they wcre originally excitcd by volition, are in this work termed fenfitive motions; but thofe actions of the mufcles or organs of fenfe, which do not contribute to remove the offending caufe, as in general eonvulfions or in madnefs, are in this work termed voluntary motions, or motions in confequence of averfion, though in common language they are called involuntary ones. Thofe fenfitive unrefirainable actions, which contribute to remove the caufe of pain are uniformly and invariably exerted, as in, coughing or fneezing; but thofe motions which are exerted in confequence of averfion without contributing to remove the painful caufe, but only to prevent the fenfation of it, as in epileptic, or eataleptic fits, are not uniformly and invariably exerted, but change from one fet of mufcles to another, as will be further explained; and may by this eriterion alfo be diftinguifhed from the former.

At the fame time thofe motions, which are excited by perpetual ftimulus, or by affociation with or painful fenfation, may properly be termed involuntary motions, as thofe of the heart and arteries; as the faculty of volition feldom affects thofe, except when it exifts in unnatural quantity, as in maniacal people.
2. It was obferved in Section XIV. on the Production of Ideas, that thofe parts of the fyftem, which are ufually termod the organs of fenfe, are liable to be excited into pain by the exccfs of the ftimulus of thofe objects, which are by nature adapted to affect them; as of too great light, found, or preffure. But that thefe organs receive no pain from the defect or abfence of thefe ftimuli, as in darkncfs or filence. But that our other organs of perception, which have generally been called appctites, as of hunger, thirft, want of heat, want of frefh air, are liable to be affected with pain by the defect, as well as by the excers of their appropriated ftimuli.

This excefs or defect of fimulus is however to be confidered only as the remote caufe of the pain, the immediate caufe being the excefs or defect of the natural action of the affected part, according to Sect. IV. 5. Hence all the pains of the body may be divided into thofe from excefs of motion, and thofe from defect of motion which diftinction is of great importance in the knowledge and the cure of many difeafes. For as the pains from excefs of motion either gra-
dually fubfide, or are in general fueceeded by inflammation; fo thofe from defect of motion either gradually fubfide, or are in general fueceeded by convulfion, or madnefs. Thefe pains are eafily diftinguifhable from each other by this circumftance, that the former are attended with heat of the pained part; or of the whole body; whereas the latter exift without inereafe of heat in the pained part, and are generally attended with coldnefs of the extremities of the body; which is the true criterion of what have been called nervous pains.
Thus when any acrid material, as fnuff or lime, falls into the eye, pain and inflammation and heat are produced from the exeefs of ftimulus; but violent hunger, hemicrania, or the clavus hyftericus, are attended with coldnefs of the extremities, and defect of circulation. When we are expofed to great cold, the pain we experience from the deficieney of heat is attended with a quiefcence of the motions of the vafcular fyftem; fo that no inflammation is produced, but a great defire of heat, and a tremulous motion of the fubentaneous mufcles, which is properly a convulfion in confequence of this pain from defect of the ftimulus of heat.

It was before mentioned, that as fenfation confifts in certain movements of the fenforium, beginning at fome of tbe extremities of it, and propagated to the central parts of it; fo volition confints
confifis of certain other movements of the fenforium, commencing in the central parts of it, and propagited to fome of its extremities. This idea of thefe two great powers of motion in the ammal machine is confirmed from obferving, that they never exift in a great degree or univerfally at the fame time; for while we firongly exert our voluntary motions, we ceafe to feel the pains or uneafineffes, which occafioned us to exert them.

Hence during the time of fighting with fifts or fiwords no pain is felt by the combatants, till they ceafe to exert themfelves. Thus in the beginning of ague-fits the painful fenfation of cold is diminifhed, while the patient exerts himfclf in the fhivering and gnafhing of his teeth. He then ceafes to exert himfelf, and the pain of cold returns; and he is thus perpetually induced to reiterate thefe exertions, from which he experiences a temporary relief. The fame occurs in labour-pains, the exertion of the parturient woman relieves the violence of the pains for a time, which recur again foon after fhe has ceafed to ufe thofe exertions. The fame is true in many other painful difeafes, as in the ftrangury, tenefmus, and the efforts of vomiting; all thefe difagreeable fenfations are diminifhed or removed for a time by the various exertions they occafion, and recur alternately with thofe excrtions.

The reftleffnefs in fome fevers is an almoft per6
petual exertion of this kind, exeited to relieve fome difagreeable fenfations; the reeiproeal oppofite exertions of a wounded worm, the alternate emprofthotonos and opifthotonos of fome fpafmodic difeafes, and the intervals of all convulfions, from whatever caufe, feem to be owing to this cireumftance of the laws of animation; that great or univerfal exertion cannot exift at the fame time with great or univerfal fenfation, though they can exift reciprocally; which is probably refolvable into the more general law, that the whole fenforial power being expended in one mode of exertion, there is none to fpare for any other. Whence fyncope, or temporary apoplexy, fueceeds to epileptic convulfions.
3. Hence when any violent pain afflicts us, of which we ean neither avoid nor remove the caufe, we foon learn to endeavour to alleviate it, by exerting fome violent voluntary effort, as mentioned above; and are naturally induced to ufe thofe mufcles for this purpole, which have been in the early periods of our lives moft frequently or moft powerfully exerted.

Now the firft mufcles, which infants ufe moft frequently, are thofe of refpiration; and on this account we gain a habit of holding our breath, at the fame time that we ufe great efforts to exclude it, for this purpofe of alleviating unavoidable pain; or we prefs out our breath through a fmall aperture of the larynx, and fcream violently, when
when the pain is greater than is relievable by the former mode of exertion. Thus children feream to relieve any pain cither of body or mind, as from anger, or fear of being beaten.

Hence it is curious to oblerve, that thofe animals, who have more frequently exerted their mufcles of refpiration violently, as in talking, barking, or grunting, as children, dogs, hogs, feream much more, when they are in pain, than thofe other animals, who ufe littlc or no language in their, common modes of life; as horfes, fheep, and cows.
The next moft frequent or moft powerful efforts, which infants are firft tempted to produce, are thofe with the mufcles in biting hard fubffanccs; indeed the exertion of thefe mufeles is very powerful in common maftication, as appears from the pain we receive, if a bit of bonc is unexpectedly found amongft our fofter food; and further appears from their acting to fo great mochanical difadvantage, particularly when we bite with the incifores, or canine teeth; which are firft formed, and thence are firft ufed to violent exertion.

Hence when a perfon is in great pain, the caufe of which he cannot remove, he fets his teeth firmly together, or bites fome fubftance between them with'great vchemence, as another mode of violent exertion to produce a temporary relief. Thus we have a proverb where no help

VOL. II.
can be had in pain, " to grin and abide;" and the tortures of hell are faid to be attended with " gnafhing of teeth."

Hence in violent fpafmodic pains I have feen pcople bite not only their tongues, but their arms or fingers, or thofe of the attendants, or any object which was near them; and alfo ftrike, pinch, or tear, others or themfelves, particularly the part of their own body, which is painful at the time. Soldiers, who die of painful wounds in battle, are faid in Homer to bite the ground. Thus alfo in the bellon, or colica faturnina, the paticnts are faid to bite their own flefh, and dogs in this difeafe to bite up the ground they lie upon. It is probable that the great endeavours to bite in mad dogs, and the violence of other mad animals, are owing to the famc caufe.
4. If the efforts of our voluntary motions are exerted with ftill greater energy for the relief of fome difagrceable fenfation, convulfions are produced; as the various kinds of epilepfy, and in fome hyfteric paroxyfms. In all thcfe difeafes a pain or difagreeable fenfation is produecd, frequently by worms, or acidity in the bowels, or by a difeafed nerve in the fide, or head, or by the pain of a difeafed liver.

In fome conftitutions a more intolcrable degree of pain is produced in fome part at a diftance from the caufe by fenfitive affociation, as before explained; thefe pains in fuch conflitutions arrife
to fo great a degree, that I verily believe no artificial tortures could equal fome, which I have witneffed; and am confident life would not have long been preferved, unlefs they had been foon diminifhed or removed by the univerfal convulfion of the voluntary motions, or by temporary madnefs.

In fome of the unfortunate patients I have obferved, the pain has rifen to an inexpreffible degree, as above defcribed, before the convulfions have fupervened; and which were preceded by frearning, and grinning; in others, as in the common epilepfy, the convulfion has immediately fucceeded the commencement of the difagreeable fenfations; and as a ftupor frequently fucceeds the convulfions, they only feemed to remember that a pain at the fomach preceded the fit, or fome other uneafy feel; or more frequently retained no memory at all of the immediate caufe of the paroxyfm. But even in this kind of epilepfy, where the patient does not recollect any preceding pain, the paroxyfms generally are preceded by a quivering motion of the under jaw, with a biting of the tongue; the teeth afterwards become preffed together with vehemence, and the cyes are then convulfed, before the commencement of the univerfal convulfion ; which are all efforts to relieve pain.

The reafon why thefe convulfive motions are alternately exerted and remitted was mentioned
above, and in Sect. XII. 1. 3. when the exertions are fuch as give a temporary relief to the pain, which excites them, they ecafe for a time, till the pain is again perccived; and then new exertions are produced for its relief. We fee daily examples of this in the loud reiterated laughter of fome people; the pleafurable fenfation, which excites this laughter, arifes for a time fo high as to change its name and become painful: the convulfive motions of the refpiratory mufcles relieve the pain for a time; we are, however, unwilling to lofe the pleafure, and prefently put a ftop to this exertion, and immediately the pleafure recurs, and again as inftantly rifes into pain. All of us have felt the pain of immoderate laughter; children have been tiekled into convulfions of the whole body; and others have died in the act of laughing; probably from a paralyfis fuccecding the long continued actions of the mufcles of refpiration.

Hence we learn the reafon, whly children, who are fo eafily excited to laugh by the tickling of other people's fingers, cannot tickle themfelves into laughter. The cxertion of their hands in the endeavour to tickle themfelves prevents the neceffity of any exertion of the refpiratory nufcles to relieve the excefs of pleafurable affection. See Sect. XVII. 3.5.

Chryfippus is recorded to have died laughing, when an afs was invited to fup with hin. The he was ill, faw a tame monkey at his bed-: fide put on the holy tiara. Hall. Phyf. T. III. p. 306 .

There are inftances of epilepfy being produced by laughing recorded by Van Siwieten, T. III. 402 and 308. And it is well known, that many people have died infantaneoufly from the painful excefs of joy, which probably might have been prevented by the exertions of laughter.

Every combination of ideas, which we attend to, occalions pain or pleafure; thofe which occafion pleafure, furnifh either focial or felfifh pleafure, either malicious or friendly, or lafcivious, or fublime pleafure ; that is, they give us pleafure mixed with other emotions, or they give us unmixed pleafure, without occafioning any other emotions or exertions at the fame time. This unmixed pleafurc, if it be great, becomes painful, like all other animal motions from ftimuli of every kind; and if no other exertions are occafioned at the fame time, we ufe the exertion of laughter to relieve this" pain. Hence laughter is occafioncd by fuch wit as excites fimply pleafure without any other emotion, fuch as pity, love, reverence. For fublime idcas are mixed with admiration, beautiful ones with love, new ones with furprife; and thefe exertions of our ideas prevent the action of laughter from being neceffary to relieve the painful pleafure above I 3 defcribed.
defcribed. Whence laughable wit confifts of frivolous ideas, without conncxions of any confequence, fuch as puns on words, or on phrafes, incongruous junctions of ideas; on which account laughter is fo frequent in children.

Unmixed pleafure lefs than that, which caufes laughter, caufes fleep, as in finging children to flecp, or in flight intoxication from wine or food. Seè Sect. XVIII. 12.
5. If the pains, or difagreeable fenfations, above defcribed do not obtain a temporary relief from thefe convulfive exertions of the nufcles, thofe convulfive exertions continue without remiffion, and one kind of catalepfy is produced. Thus when a nerve or tendon produces great pain by its being inflamed or wounded, the patient fets his teeth firmly together, and grins violently, to diminifh the pain; and if the pain is not relieved by this exertion, no relaxation of the maxillary mufcles takes place, as in the conyulfions above deferibed, but the jaws remain firmly fixed together. This locked jaw is the. moft frequent inftance of cataleptic fpafm, becaufe we are more inclined to exert the mufcles fubfervient to maftication from their carly obcdience to violent efforts of volition.

But in the cafe relatcd in Sect. XIX. on Reverie, the cataleptic lady had pain in her upper teeth; and preffing one of her hands vehemently againft her check-bone to diminifh this pain, it remained
in that autitude for about half an hour twice a day, till the painful paroxyfm was over.

I have this very day feen a young lady in this difeale, (with which fhe has frequently been aflicted;) fhe began to-day with vioient pain fhooting from one fide of the forehead to the occiput, and after various ftruggles lay on the bed with her fingers and wrifts bent and fiiff for about two hours; in other refpects the feemed in a fyncope with a natural pulfe. She then had intervals of pain and of fpafim, and took three grains of opium, every hour till fhe had taken nine grains, before the pains and fpafm ceafed.

There is, however, anothcr fpecies of fixed fpafm, which differs from the former, as the pain exifts in the contracted muffle, and would feem rather to be the confequence than the caufe of the contraction, as in the cramp in the calf of the leg_{2} and in many other parts of the body.

In thefe fpafms it thould feem, that the mufcle itfelf is firft thrown into contraction by fome difagreeable fenfation, as of cold; and that then the violent pain is produced by the great contraction of the mufcular fibres extending its own tendons, which arc faid to be fenfible to extenfion only; and is further explaincd in Sect. XVIII. 15,
6. Many inftances have been given in this work, where after violent motions excited by irritation, the organ has become quiefcent to lefs, and even to the great irritation, which induced it
into riolent motion; as after looking long at the fun or any bright colour, they ceafe to be feen; and after removing from bright day-light into a gloomy room, the eye cannot at filit perceive the objects, which fimulate it lefs. Similar to this is the fyncope, which fucceeds after the violent excrtions of our voluntary motions, as after epileptic fits, for the power of volition acts in this cafc as the ftimulus in the other. This fyncope is a temporary palfy, or apoplexy, which ceafes after a time, the mufcles recovering their power of being excited into action by the efforts of volition; as the cyc in the circumftance above mentioned recovers in a little time its power of feeing objects in a gloony room; which were invifible immediately after coming out of a ftronger light. This is owing to an accumulation of fenforial power during the inaction of thofe fibres, which were before accuftonied to perpctual exertions, as cxplained in Sect. XII. 7. 1. A flighter degrec of this difeafe is experienced by every one after great fatiguc, when the mufcles gain fuch inability to furiher action, that we arc obliged to reft them for a while, or to fummon a greater power of volition to continue their motions.

In all the fyncopes, which I have feen induced after convulfive fits, the pulfe has continucd natural, though the organs of fenfe, as well as the locomotive mufcles, have ceafed to perform their functions:
functions; for it is neccflary for the perception of objccts, that the external organs of fenfe fhould be properly excited by the voluntary power, as the cyc-lids muft be open, and perhaps the mulcles of the eye put into action to diftend, and thence give greatcr pellucidity to the cornea, which in fyncope, as in death, appears flat and lefs tranfparent. The tympanum of the ear allo feems to require a voluntary exertion of its mufcles, to gain its due tenfion, and it is probable the other external organs of fenfe require a fimilar voluntary exertion to adapt them to the diftinct perception of objects. Hence in fyncope as in flcep, as the power of volition is furpended, no external objects are perceived. Sec Scet. XVIII. 5. During the time which the patient lies in a fainting fit, the fpirit of animation becomes accumulated; and hence the mufcles in a while become irritable by their ufual ftimulation, and the fainting fit ceafes. See Scct. XII. 7. 1.
7. If the exertion of the voluntary motions has been ftill more energetic, the quicfcence, which fucceeds, is fo complete, that they cannot again be cxcited iuto action by the efforts of the will. In this manner the palfy, and apoplexy (which is an univerfal palfy) are frequently produced after convulfions, or other violent exertions; of this I fhall add a few inftances.

Platncrus mentions fóme, who have dicd apoplectic from violent exertions in dancing; and

Dr. Mead, in his effay on Poifons, records a patient in the hydrophobia, who at one effort broke the cords which bound him, and at the fame inftant expired. And it is probable, that thofe, who have expired from immoderate langhter, have died from this paralyfis conlequent to violent exertion. Mrs. Scott of Stafford was walking in her garden in perfect health with her neighbour Mrs. -; the latter aceidentally fell into a muddy rivulet, and tried in vain to difengage herfelf by the affiftance of Mrs. Seott's hand. Mrs. Scott exerted her utmoft power for many minutes, firft to affift her friend, and next to prevent herfelf from being pulled into the morafs, as her diftreffed companion would not difengage her hand. After other affiftance was procured by their united fcreams, Mrs. Seott walked to a chair about twenty yards from the brook, and was feized with an apoplectic firoke : which continued many days, and terminated in a total lofs of her right arm, and her fpeech; neither of which the ever after perfectly recovered.
It is faid, that many people in Holland have died after fkating too long or too violently on their frozen canals; it is probable the death of thefe, and of others, who have died fuddenly in fivimming, has been owing to this great quiefcence or paralyfis; which has fucceeded very violent exertions, added to the concomitant cold, which has had
greater effect after the fufferers had been heated and exhauifted by previous exercife.

I remember a young man of the name of Nairne at Cambridge, who walking on the edge of a barge fell into the river. His coufin and fellow-ftudent of the fame name. knowing the other could not fiwim, plunged into the water after him, caught him by his clothes, and approaching the bank by a vehement exertion propelled him fafe to the land, but that inftant, feized, as was fuppofed, by the cramp, or paralyfis, funk to rife no more. The reafon why the cramp of the mufcles, which compofe the calf of the leg, is fo liable to affect fwimmers, is, becaufe thefe mufcies have very weak antagonifts, and are in walking generally elongated again after their contraction by the weight of the body on the ball of the toe, which is very much greater than the refiftance of the water in. fwimming. See Section XVIII. 15.

It does not follow that every apoplectic or paralytic attack is immediately preceded by vehement exertion; the quiefcence, which fucceeds exertion, and which is not fo great as to be termed paralyfis, frequently recurs afterwards at certain periods; and by other caufes of quiefcence, occurring with thofe periods, as was explained in treating of the paroxyfms of intermitting fevers; the quiefcence at length becomes fo great as to be incapable of again being removed by the efforts
efforts of volition, and complete paralyfis is formed. See Section XXXII. 3. 2.

Many of the paralytic patients, whom I have feen, have evidently had difeafed livers from the too frequent potation of firituous liquors; fome of them have had the gutta rofea on their faces and breafts; which has in fome degree recedcd either fpontaneoufly, or by the ufe of external remedies, and the paralytic ftroke has fucceeded; and as in feveral perfons, who have drunk much vinous firits, I have obferved epilcptic fits to commence at about forty or fifty years of age, without any hereditary taint, from the ftimulus, as I believed, of a difealed liver; I was induced to afcribe many paralytic cafes to the fame fource; which werc not evidently the effect of age, or of macquired debility. And the account given bcfore of dropfies, which very frequently are owing to a paralyfis of the abforbent fyftem, and are generally atteridant on free drinkers of fpirituous liquors, confirmed me in this opinion.

The difagrceable irritation of a difcafed liver produces excrtions and confequent quiefence; thefe by the accidental concirrence of ot her caufes of quiefecnec, as cold, folar or lunar periods, inanition, the want of their ufual portion of firit of wine, at length produces paralylis.

This is further confirmed by obferving, that the mufcles, we moft frequently, or moft powerfully exert, are moft liable to palfy; as thofe of
the voice and of articulation, and of thofe paralytics which I have feen, a much greater proportion have loft the ufe of their right arm ; which is fo much more generally excrted than the left.

I cannot difmifs this fubject without obferving, that after a paralytic ftroke, if the vital powers are not much injured, the paticnt has all the movements of the affected limb to learn over again, juft as in early infancy; the limb is firft moved by the irritation of its mufcles, as in ftretching, (of which a cafe was related in Section VII. 1.3.) or by the electric concuffion; afterwards it becomes obedient to fenfation, as in violent danger or fear; and lafly, the mufcles become again affociated with volition, and gradually acquire their ufual habits of acting together.

Another phænomenon in palfics is, that when the limbs of one fide are difabled, thofe of the other are in perpetual motion. This can only be explaincd from conceiving that the power of motion, whatever it is, or wherever it refides, and which is capable of being exhaufted by fatigue, and accumulated in reft, is now lefs expended, whilft one half of the body is incapable of receiving its ufual proportion of it, and is hence derived with greater eafe or in greater abundance into the limbs, which remain unaffected.
II. 1. The excefs or defect of voluntary exertion produces fimilar effects upon the fenfual
motions,
motions, or ideas of the mind, as thofe already mentioned upon the mufcular fibres. Thus when any violent pain, arifing from the defect of fome peeuliar ftimulus, exifts either in the mufcular or fenfual fyftems of fibres, and which cannot be removed by acquiring the defective ftimulus; as in fome confitutions convulfions of the mufcles are produced to procure a temporary relief, fo in other conflitutions vehement voluntary exertions of the ideas of the mind are produced for the fame purpofe ; for during this exertion, like that of the mufcles, the pain cither vanifhes or is diminifhed: this violent exertion conftitutes madnefs; and in many cafes I have feen the madnefs take place, and the convulfions ceafe, and reciprocally the madnefs ceafe, and the convulfions fupervene. See Sectioń III. 5. 8.
2. Madnefs is diftinguifhable from delirium, as in the latter the patient knows not the place where he refides, nor the perfons of his friends or attendants, nor is confeious of any external objects, except when fpoken to with a louder voice, or flimulated with unufual force, and even then he foon relapfes into a ftate of inattention to every thing about him. Whilft in the former he is perfectly fenfible to every thing external, but has the voluntary powers of his mind intenfely exerted on fome particular object of his defire or averfion, he harbours in his thoughts a fufpicion of all mankind, left they fhould counteract
teract his defigns; and while he kecps his intentions, and the motives of his actions profoundly fecret; he is perpetually ftudying the means of arquiring the object of his wifh, or of preventing or revenging the injuries he fufpects.
3. A late French philofopher, Mr. Helvetius, has deduced almoft all our actions from this principle of their relieving us from the ennui or tredium vitæ; and true it is, that our defires or averfions are the motives of all our voluntary actions; and human nature feems to excel other animals in the more facile ufe of this voluntary power, and on that aecount is more liable to infanity than other animals. But in mania this violent exertion of volition is expended on miftaken objects, and would not be relieved, though we were to gain or efcape the objects, that excite it. Thus I have feen two inftances of madmen, who conceived that they had the itch, and feveral have believed they had the venereal infection, without in reality having a fymptom of either of them. They have been perpetually thinking: upon this fubject, and fome of them were in vain falivated with defign of convincing them to the contrary.
4. In the minds of mad people thofe volitions alone exift, which are unmixed.with fenfation; immoderate fufpicion is generally the firft fymptom, and want of hame, and want of delicacy about
about cleanlinefs. Sufpicion is a voluntary cxertion of the mind arifing from the pain of fear, whieh it is excrted to relieve: fhame is the name of a peculiar difagrecable fenfation, fee Fable of the Bees, and delicacy about cleanlinefs arifes from another difagreeable fenfation. And thercfore are not found in the minds of maniacs, which are employed folely in voluntary exertions.: Hence the moft modeft women in this difeafe walk naked amongit men without any kind of concern, ufe obfene difcourfe, and have no delicacy about their natural evacuations.
5. Nor are maniacal people more attentive to their natural appetites, or to the irritations which furround them, except as far as may refpect their fufpicions or defigns; for the violent and perpetual exertions of their voluntary powers of mind prevent thcir perception of almoft every other objcct, either of irritation or of fenfation. Hence it is that they bear cold, hunger, and fatigue, with much greater pertinacity than in their fober hours, and are lefs injured by them in refpect to their general hcalth. Thus it is afferted by hiforians, that Charles the Twelfth of Sweden flept on the fnow, wrapped only in his cloak, at the fiege of Frederickftad, and bore cxtremcs of cold and hunger, and fatigue, under which numbers of his foldiers perifhed; becaufe the king was infanc with ambition, but the foldier
had no fuch powerful fimulus to preferve his fyftem from debility and death.
6. Befides the infanities arifing from exertions in confequence of pain, there is alfo a pleafurable infanity, as well as a pleafurable delirium; as the infanity of perfonal vanity, and that of religious fanaticifm. When agreeable ideas excite into motion the fenforial power of fenfation, and this again caufes other trains of agreeable ideas, a conftant fream of pleafurable ideas fucceeds, and produces pleafurable delirium. So when the fenforial power of volition excites agreeable ideas, and the pleafure thus produced excites more volition in its turn, a conftant flow of agreeable voluntary ideas fucceeds; which when thus exerted in the extreme conftitutcs infanity.

Thus when our mufcular actions are excited by our fenfations of pleafure, it is termed play; when they are excited by our volition, it is termed work; and the former of thefe is attended with lefs fatigue, becaufe the mufcular actions in play produce in their turn more pleafurable fenfation; which again has the property of producing more mufcular action. An agreeable inftance of this I faw this morning. A little boy, who was tired with walking, begged of his papa to carry him. "Herc," fays the reverend doctor, "ride upon my gold-headed cane;" and the pleafed child, putting it between his legs, gallopped away with delight, and complained no
more of his fatigue. Here the aid of another fenforial power, that of pleafurable fenfation, fuperadded vigour to the exertion of exhaufted volition. Which could otherwife only have been excited by additional pain, as by the lafh of flavery. On this account where the whole fenforial power has been exerted on the contemplation of the promifed joys of heaven, the faints of all perfecuted religions have borne the tortures of martyrdom with otherwife unaccountable firmnefs.
7. There are fome difeafcs, which obtain at leaft a temporary relief from the exertions of infanity; many inflances of dropfies being thus for a time cured are recorded. An elderly woman labouring with afcites I twice faw relieved for fome weeks by infanity, the dropfy ceafed for feveral weeks, and recurred again alternating with the infanity. A man afflicted with difficult refpiration on lying down, with very irregular pulfe, and œdematous legs, whom I faw this day, has for above a week been much relieved in refpect to all thofe fymptoms by the acceffion of infanity, which is fhewn by inordinate fufpicion, and great anger.

In cafes of common temporary anger the increafed action of the arterial fyftem is feen by the red fkin, and increafcd pulfe, with the immediate increafe of mufcular activity. A friend of mine, when he was painfully fatigued by riding
on horfeback, was accuftomed to call up ideas into his mind, which ufed to excite his anger or indignation, and thus for a time at leaft relieved the pain of fatigue. By this temporary infanity, the effect of the voluntary power upon the whole of his fyttem was increafed; as in the cafes of dropfy above mentioned, it would appear, that the increafed action of the voluntary faculty of the fenforium affected the abforbent fyftem, as well as the fecerning one.
8. In refpect to relieving inflammatory pains, and removing fever, I have feen many inftances, as mentioned in Sect. XII. 2. 4. One lady, whom I attended, had twice at fome years interval a locked jaw, which relieved a pain on her fternum with peripneumony. Two other ladies I faw, who towards the end of violent peripneumony, in which they frequently loft blood, were at length cured by infanity fupervening. In the former the increafed voluntary exertion of the mufcles of the jaw, in the latter that of the organs of fenfe, removed the difeafe; that is, the difagreeable fenfation, which had produced the inflammation, now excited the voluntary power, and thefe new voluntary exertions employed or expended the fuperabundant renforial power, which had previoufly been exerted on the arterial fyftem, and caufed inflammation.

Another cafe which I think worth relating, K 2
was of a young man about twenty; he had laboured under an irritative fever with debility for three or four weeks, with very quick and rery feeble pulfe, and other ufual fymptoms of that fpecies of typhus, but, at this time complained much and frequently of pain of his legs and fect. When thofe who attended him were nearly in defpair of his recovery', I obferved with pleafure an infanity of mind fupervene : which was totally different from delirium, as he knew his friends, calling them by their names, and the room in which he lay, but became violently fufpicious of his attendants, and calumniated with vehement oaths his tender mother, who fat weeping by his bed. On this his pulfe became flower and firmer, but the quicknefs did not for fome time intirely ceafe, and he gradually recovered. In this cafe the introduction of an increafed quantity of the power of volition gave vigour to thofe moveinents of the fyftem, which are generally only actuated by the power of irritation, and of affociation.

Another cafe I recollect of a young man, about twenty-five, who had the fearlet-fever, with very quick pulfe, and an univerfal eruption on his fkin, and was not without reafon efteemed to be in great danger of his life. After a few days an infanity fupervencd, which his friends miftook fordelirium; and he gradually recovered, and the cuticle pect-
ed off. From thefe and a few other cafes I have always eftecmed infanity to be a favourable fign in fevers, and have cautioufly diftinguifhed it from delirium.
III. Another mode of mental excrtion to re lieve pain, is, by producing a train of ideas not only by the cfforts of volition, as in inlanity ; but by thole of fenfation likewife, as in delirium and fleep. This mental effort is termed reverie, or ${ }^{-}$ fomnambulation, and is defcribed more at large in Sect. XIX. on that fubject. But I fhall here relate another cafc of that wonderful difeafe, which fell yefierday under my cyc, and to which I have feen many analogous alienations of mind, though not exactly fimilar in all circumftances. But as all of them either began or terminated with pain or convulfion, there can be no doubt but that they are of epilcptic origin, and conftitute another mode of mental cxcrtion to relieve fome painful fenfation.

1. Mafter A. about nine ycars old, had been feized at feven every morning for ten days with uncommon fits, and had had flight returns in the afternoon. They were fuppofed to originate from worms, and had been in vain attempted to be removed by vermifuge purges. As his fit was expected at feven yefterday morning, I faw him before that hour ; he was aflecp, feemed free from pain, and his pulfe natural, About feren he began to complain of pain about his navel, or more K 3
to the left fide, and in a few minutes had excrtions of his arms and legs like fwimming. He then for half an hour hunted a pack of hounds; as appeared by his hallooing, and calling the dogs by their names, and difcourfing with the attendants of the chafe, defcribing exactly a day of hunting, which (I was informed) he had witneffed a year before, going through all the moft minute circumftances of it; calling to people, who were then prefent, and lamenting the abfence of others, who were then alfo abfent. After this fcene he imitated, as he lay in bed, fome of the plays of boys, as fwimming and jumping. He then fung an Englifh and then an Italian fong; part of which with his eyes open, and part with them clofed, but could not be awakened or excited by àny violence, which it was proper to ufe.

After about an hour he came fuddenly to himfelf with apparent furprife, and feemed quite ignorant of any part of what had paffed, and after being apparently well for half an hour, he fuddenly fell into a great fupor, with flower pulfe than natural, and a flow moaning refpiration, in which he continued about another half hour, and then recovered.

The fequel of this difeafe was favourable; he was directed one grain of opium at fix every morning, and then to rife out of bed; at half paft fix he was directed fifteen drops of laudanum.
in a glafs of wine and water. The firft day the paroxyfin became fhorter, and lefs violent. The dofe of opium was increafed to one-half more, and in three or four days the fits left him. The bark and filings of iron were alfo exhibited twiee a day; and I believe the complaint returned no more.
2. In this paroxyfm it muft be obferved, that he began with pain, and ended with ftupor, in both circumftances refembling a fit of, epilepfy. And that therefore the exertions both of mind and body, both the voluntary ones, and thofe immediately excited by pleafurable fenfation, were exertions to relieve pain.

The hunting fcene appeared to be rather an act of memory than of imagination, and was therefore rather a voluntary exertion, though attended with the pleafurable eagernefs, which was the confequence of thofe ideas recalled by recollection, and not the caufe of them.

Thefe ideas thus voluntarily reeollected were fuceeeded by fenfations of pleafure, though his fenfes were unaffected by the ftimuli of vifible or audible objects; or fo weakly exeited by them as not to produce fenfation or attention. And the pleafure thus excited by volition produced other ideas and other motions in confequence of the fenforial power of fenfation. Whence the mixed eatenations of voluntary and fenfitive ideas and mufcular motions in reverie; which, like every
other kind of vehement exertion, contribute to relieve pain, by expending a large quantity of fenforial power.

Thofe fits generally commence during fleep, from whence I fuppofe they have been thought to have fome connexion with fleep, and have thence been termed Somnambulifin; but their commencement during fleep is owing to our increafed excitability by internal fenfations at that time, as explained in Sect. XVIII. 14 and 15, and not to any fimilitude between reveric and fleep.
3. I was once concerned for a very elegant and ingenious young lady, who liad a reverie on alternate days, which continued nearly the whole day; and as in her days of difeafe the took up the fame kind of ideas, which fhe had converfed about on the alternate day before, and could recollect nothing of them on her well day; fhe appeared to her friends to poffefs tivo minds. This care alfo was of the epileptic kind, and was cured, with fome relapfes, by opium adminiftered before the commencement of the paroxyfin.
4. Whence it appears, that the methods of relieving inflammatory pains, is by removing all ftimulus, as by venefection, cool air, mueilaginous diet, aqueous potation, filence, darknefs.

The methods of relieving pains from defect of fimulus is by fupplying the peeuliar ftim!us required, as of food, or warmth.

And the gencral method of relieving pain is by cxciting
exciting into action fome great part of the fyftem for the purpole of expending a part of the fenforial power. This is done either by exertion of the voluntary ideas and mufcles, as in infanity and convultion ; or by exerting both voluntary and fenfitive motions, as in reverie; or by exciting the irritative motions by wine or opium interually, and by the warm bath or blifters ex. ternally; or laftly, by exciting the fenfitive ideas by good news, affecting ftories, or agreeable paffions.

S E C T. XXXV.

DISEASES OF ASSOCIATION.

I. I. Sympathy or confent of parts. Primary and fecondary parts of an affociated train of motions reciprocally affect each other. Parts of irritative trains of motion affeet each other in four ways. Sympathies of the אkin and foomach. Fluping of the face after a meal. Eruption of the fmallpox on the face.' Chilnefs after a meal. 2. Vertigo from intoxication. 3. Abforption from the lungs and pericardium by emetics. In vomiting the aftions of the flomach are decreafed, not increafed. Digeftion ftrengthened after an emctic. Vomiting from deficicncy of fenforial power. 4. Dy/pnoa from cold bathing. Slow pulfe from digitalis. Death from gout in the fomach. II. I. Primary and fecondary parts of fenfitive affociations afferz cach other. Pain from gall-fone, from urinary fone. Hemiciania. Painful cpilepy. 2. Gout and red face from inflamed liver. Shingles from inflamed kidney. 3. Coryza from cold applied to the fect. Pleurify. Hepatitis. 4. Pain of Shoulders from inflamed liver. III. Difeafes from the afSociations of ideas.
I. 1. Many fynchronous and fucceffive motions of our mufcular fibres, and of our organs of fenfe, or ideas, become affociated fo as to form indiffoluble tribes or trains of action, as fhewn in Section X. on Affociate Motions. Some confli-
tutions more cafily eftablifh thefe affociations, whether by voluntary, fenfitive, or irritative repetitions, and fome more caffly lofe them again, as fhewn in Section XXXI. on Temperaments.

When the beginning of fuch a train of actions becomes by any means difordered, the fucceeding part is liable to become difturbed in confequence, and this is commonly termed fympathy or confent of parts by the writers of medicine. For the more clear underftanding of thefe fympathies wie muft confider a tribe or train of actions as divided into two parts, and call one of them the primary or original motions, and the other the fecondary or fympathetic ones.

The primary and fecondary parts of a train of irritative actions may reciprocally affect each other in four different manners. 1. They may both be exerted with greater energy than natural. 2. The former may act with greater, and the latter with lefs energy. 3. The former may act with lefs, and the latter with greater energy. 4. They may both act with lefs energy than natural. I fhall now give an example of each kind of thefe modes of action, and endeavour to fhew, that though the primary and fecondary parts of thefe trains or tribes of motion are connected by irritative affociation, or their previous habits of acting together, as defcribed in Sect. XX . on Vertigo. Yet that their acting with fimilar or diffimilar degrees of energy, depends
on the greater or lefs quantity of fenforial power, which the primary part of the train expends in its exertions.

The actions of the flomach conftitute fo important a part of the affociations of both irritative and fenfitive motions, that it is faid to fympathize with almoft every part of the body; the firft example, which I fhall adduce to fhew that both the primary and fecondary parts of a train of irritative affociations of motion act with increafed energy, is taken from the confent of the fkin with this organ. When the action of the fibres of the ftomach is increafed, as by the ftimulus of a full meal, the exertions of the cutaneous arteries of the face become increafed by their irritative affociations with thofe of the ftomach, and a glow or flufhing of the face fucceeds. For the fimall veffels of the fkin of the faee having been more accuftomed to the varieties of action, from their frequent expofure to various degrecs of cold and heat, become more eafily excited into increafed action, than thofe of the eovercd parts of our bodies, and thus act with more energy from their irritative or fenfitive affociations with the ftomach. On this account in finall-pox the cruption in confequence of the previous affection of the ftomach breaks' out a day fooner on the faee than on the hands, and two days fooner than on the trunk, and recedes in fimilar times after maturation.

But fecondly, in weaker conftitutions, that is, in thofe who poffefs lefs fenforial power, fo much of it is expended in the increafed actions of the fibres of the ftomach excited by the ftimulus of a mcal, that a fenfe of chilnefs fuccecds inftead of the univerfal glow above mentioned; and thus the fecondary part of the affociated train of motions is diminifhed in energy, in confequence of the increafed activity of the primary part of it.
2. Another inftance of a fimilar kind, where the fecondary part of the train acts with lefs energy in confequence of the greater exertions of the primary part, is the vertigo attending intoxication; in this circumftance fo much fenforial power is expended on the ftomach, and on its neareft or more ftrongly affociated motions, as thofe of the fubcutaneous veffels, and probably of the membranes of fome internal vifccra, that the irritative motions of the retina become imperfectly cxerted from deficiency of fenforial power, as explained in Sect. XX. and XXI. 3. on Vcrtigo and on Drunkennefs, and hence the ftaggering inebriate cannot completcly balance himfelf by fuch indiftinct vifion.
3. An inftance of the third circumftancc, where the primary part of a train of irritative motions acts with lefs, and the fecondary part with greater encrgy, may be obferved by making the following experiment.
experiment. If a perfon lics with his arms and fhoulders out of bed, till they become cold, a temporary coryza or catarrh is produced; fo that the paffage of the noftrils becomes totally obftructed; at leaft this happens to many people; and then on covering the arms and fhoulders, till they bccome warm, the paffage of the noftrils ceales again to be obftructed, and a quantity of mucus is difcharged from them. In this cafe the quiefcence of the veffels of the fkin of the arins and fhoulders, occafioned by expofure to cold air, produces by irritative affociation an increafcd action of the veffels of the membrane of the noftrils; and the accumulation of fenforial power during the torpor of the arms and fhoulders is thus expended in producing a temporary coryza or catarrh.

Another inftance may be adduced from the fympathy or confent of the motions of the ftamach with other more diftant links of the very extenfive tribes or trains of irritative motions affociatcd with them, defcribed in Sect. XX. on Vertigo. When the actions of the fibres of the ftomacl are diminifhed or inverted, the actions of the abforbent veffels, which take up the mucus from the lungs, pericardium, and other colls of the body, become increafcd, and abforb the fluids accumulated in them with greater avidity, as appears from the exhibition of foxglove, anti-
mony, or other emetics, in cafes of anafarca, attended with unequal pulfe and difficult refpiration.

That the act of naufca and vomiting is a decreafed exertion of the fibres of the ftomach may be thus deduced; when an emetic medicine is adminiftered, it produces the pain of ficknefs, as a difagreeable tafte in the mouth produces the pain of naufea; thefe pains, like that of hunger, or of cold, or like thofe, which are ufually termed nervous, as the head-ach or hemicrania, do not excite the organ into greater action; but in this cafe I imagine the pains of ficknefs or of naufea counteract or deftroy the pleafurable fenfation, which feems neceffary to digeftion, as Shewn in Sect. XXXIII. 1. 1. The periftaltic motions of the fibres of the ftomach become enfeebled by the want of this ftimilus of pleafurable fenfation, and in confequence ftop for a time, and then become inverted; for they cannot become inverted without being previoully fopped. Now that this inverfion of the trains of motion of the fibres of the ftomach is owing to the deficiency of pleafurable fenfation is evinced from this circumftance, that a naufeous idea excited by words will produce vomiting as effectually as a naufeous drug.

Hence it appears, that the act of naufea or vomiting expends lefs fenforial power than the usual periftaltic motions of the fomach in the digeftion digeftion of our aliment; and that hence there is a greater quantity of fenforial power becomes accumulated in the fibres of the fromacty, and more of it in confequenec to fare for the action of thofe parts of the fyftem, which are thus affociated with the ftomach, as of the whole abforbent ferics of vefficls, and which are at the fame time cxcitcd by their ufual fimuli.

From this we can underftand, how after the operation of an emetic the ftomach becomes more irritable and fenfible to the fiimulus, and the pleafure of food; fince as the fenforial power becomes accumblated during the naufea and romiting, the digeffive power is afierwards excrted more forcibly for a time. It fhould, however, be here remarked, that though vomiting is in general produced by the defect of this ftimulus of pleafurable fenfation, as when a naufeous drug is adminiftered; yet in long-continued vomiting, as in fea-ficknefs, of from habitual dramdrinking, it arifes from deficiency of fenforial power, which in the former cafe is exhaufted by. the increafed exicrtion of the irritative ideas of vifion, and in the latter by the frequent applica.. tion of an unnatural ftimulus.
4. An example of the fourth circumftance above mentioned, where both the primary and fecondary parts of a train of motions proceed with energy lefs than natural, may be obferved in the dyf-
pnœa, whieh oceurs in going into a very cold bath, and which has been deleribed and explained in Scet. XXXII. 3. 2.

And by the incrafed debility of the pulfations of the heart and arteries during the operation of an emetic. Secondly, from the flownefs and intermiffion of the pulfations of the heart from the inceffant efforts to vomit oeeafioned by an overdofe of digitalis. And thirdly, from the total ftoppage of the motions of the heart, or death, in confequence of the torpor of the ftomach, when affecled with the commencement or cold paroxyfm of the gout. See Sect. XXV. 17.
II. 1. The primary and fecondary parts of the trains of fenfitive affociation reeiprocally affect each other in different manners. 1. The increafed fenfation of the primary part may ceafe, when that of the fecondary part commences. 2. The inereafed action of the primary part may ceafe, when that of the fecondary part eommences. 3. The primary part may have increafed fenfation, and the fecondary part increafed action. 4. The primary part may have inercafed action, and the fecondary part increafed fenfation.

Examples of the firft mode, where the increafed fenfation of the primary part of a train of fenfitive affociation ceafes, when that of the fecondary part commences, are not unfrequent; ast is is the general origin of thofe pains, which continue fome time without being attended with inflammation, fuch as the pain at the pit of the YOL. II.

L
ftomach
ftomach from a fone at the neck of the gallbladder, and the pain of firangury in the glans penis from a loone at the neck of the urinary bladder. In both thefe cafes the part, which is affeced fecondarily, is believed to be much more fenfible than the part primarily affected, as defcribed in the catalogue of difeafes, Clafs II. 1. 1. 11. and IV. 2. 2. 2. and IV. 2. 2. 4.

The hemicrania, or nervous head-ach, as it is called, when it originates from \mathfrak{a} decaying tooth, is another difeafe of this kind; 'as the pain of the carious tooth always ccafcs, when the pain over one eye and temple commences. And it is probable, that the violent pains, which induce convulfions in painful cpilepfics, are produced in the fame manncr, from a more fenfible part fympathizing with a difeafed one of lefs fenfibility. See Catalogue of difcafes, Clafs IV. 2. 2. 8. and JII. 1. 1. 6.

The laft tooth, or dens fapientix, of the upper jaw moft frequently decays firft, and is liable to produce pain over the eye and temple of that fide. The laft tooth of the under jaw is alio liable to produce a fimilar hemicrania, when it begins to decay. When a tooth in the uppor jaw is the caufe of the headach, a flighter pain is fometimes perceived on the cheek-bone. And when a tooth in the lower jaw is the caule of headach, a pain fometimes affects the tendons of the mufcles of the neck, which are attached near the jaws. But the clavus hyifericus, or pain about
the middle of the parictal bone on one fide of the head, I have feen produced by the fecond of the molares, or grinders, of the under jaw; of which I fhall rclate the following cale. See Elafs IV. 2. 2. 8.

Mrs. - -, about 30 years of age, was feized with great pain about the middle of the right parietal bone, which had continued a whole day beforc I faw her, and was fo violent as to threaten to occafion convulfions. Not being able to detect a decaying tooth, or a tender one, by examination with my eye, or by ftriking them with a tea-fpoon, and fearing bad confequences from her tendency to convulfion, I advifed her to cxtrast the laft tooth of the under-jaw on the affected fide; which was done without any good effect. She was then directed to lofe blood, an? to take a brifk cathartic; and after that had operated, about 60 drops of laudanum were given her, with large dofes of bark; by whieh the pain was removed. In about a fortnight the took a cathartic medicine by ill advice, and the pain returned with greater violence in the fame place and, before I could arrive, as the lived 30 miles from me, the fuffered a paralytic ftroke; which affected her limbs and her face on one fide, and relieved the pain of her head.

About a year afterwards I was again called to her on account of a pain, as violent as before, exactly on the fame part of the other parictal
bone. On examining ber mouth I found the fecond molaris of the under-jaw on the fide before afficeted was now decayed, and coneluded, that this tooth had occafioned the ftroke of the palfy by the pain and eonfequent exertion it had caufed. On this account I earnefily entreated her to allow the found molaris of the fame jaw oppofite to the decayed one to be cxtracted; which was forthwith done, and the pain of her head immediately ceafed, to the aftonifhment of her attendants.

In the cafes above related of the pain exifting in a part difiant from the feat of the difeafe, the pain is owing to defect of the ufual motions of He painful part. This appears from the coldnefs, palenefs, and emptinefs of the affected veffels, or of the extremities of the body in general, and from there being no tendency to inflammation. The inereafed action of the primary part of thefe affociated motions, as of the hepatie termination of the bile-duct from the ftimulus of a gallftone, or of the interior termination of the urethra from the ftimulus of a ftone in the bladder, or lafily, of a dceaying tooth in hemicrania, deprives the fceondary part of thefe aftociated motions, namely, the exterior terminations of the bileduct or urethra, or the pained membranes of the head in hemierania, of their natural thare of fenforial power: and hence the fecondary parts of thefe fenfitive trains of affociation become pained
from the deficiency of their ufual motions, which. is aecompanied with defieiency of fecretions and of heat. Sce Scet. IV. 5. XII. 5. 3. XXXIV. 1.

Why does the pain of the primary part of the affociation ceafe, when that of the fecondary part commenees? This is a queftion of intrieacy, but perhaps not inexplicable. The pain of the primary part of thefe aflociated trains of motion was owing to too great ftimulus, as of the ftone at the neck of the bladder, and was confequently eaufed by too great action of the pained part. This greater action than natural of the primary part of thefe affiociated motions, by employing or expending the fenforial power of irritation belonging to the whole affociated train of motions, oceafioned torpor, and eonfequent pain in the fecondary part of the affociated train; which was poffeffed of greater fenfibility than the primary part of it: Now the great pain of the fecondary part of the train, as foon as it eommences, cmploys or expends the fenforial power of fenfation belonging to the whole affoeiated, train of motions; and in confequence the motions of the primary part, though incieafed by the ftimulus of an extraneous body, ceafe to be aceompanied with pain or fenfation.

If this mode of reafoning be juft it explains a curious fact, why when two parts of the body are ftrongly ftimulated, the pain is felt only in one of them, though it is poffible by voluntary
attention it may be alternately perceived in them both. In the fame manner, when two new ideas are prefented to us from the ftimulus of external bodies, we attend to but one of them at a time. In other words, when one fet of fibres, whether of the mufcles or organs of fenfe, contract fo flrongly as to exeite mueh fenfation; another fet of fibres eontracting more weakly do not excite fenfation at all, beeaufe the fenforial power of fenfation is pre-occupied by the firft fet of fibres. So we cannot will more than one cffect at once, though by affociations previoufly formed we can move many fibres in combination.

Thus in the inftanees above related, the termination of the bile duet in the duodenum, and the exterior extremity of the urethra, are more fenfible than their other terminations. When thefe parts are deprived of their ufual motions by deficiency of fenforial power, as above explained, they become painful according to law the fifth in Section IV, and the lefs pain originally excited by the fitimulus of concreted bile, or of a ftone at their other extremities ceales to be perceived. Afterwards, however, when the eoncretions of bile, or the ftone in the urinary bladder, become more numcrous or larger, the pain from their inereafed ftimulus becumes greater than the affociated pain; and is then felt at the neck of the gall bladder or urinary bladder; and the pain of the glans penis, or at the pit of the fomaeh, ceafes to be perceived.
2. Examples of the fecond mode, where the increafed action of the primary part of a train of fenfitive affociation ceafes, when that of the fecondary part commences, are alfo not unfrequent ; as this is the unal manner of the tranflation of inflammations from internal to external parts of the fyftem, fuch as when an inflammation of the liver or fomach is tranflated to the membranes of the foot, and forms the gout; or to the fkin of the face, and forms the rofy drop; or when an inflammation of the membrancs of the kidneys is tranflated to the fkin of the loins, and forms one kind of herpes, called fhingles; in thefe cafés by whatever caufe the original inflammation may have been produced, as the fecondary part of the train of fenfitive affociation is more fenfible, it becomes exerted with greater violence than the firft part of it ; and by both its increafed pain, and the inereafed motion of its fibres, fo far diminifhes or exhaufts the fenforial power of fenfation; that the primary part of the train being lefs fenfible ceafes both to feel pain, and to act with unnatural energy.
3. Examples of the third mode, where the primary part of a train of fenfitive affociation of motions may experience increafed fenfation, and the fecondary part increafed action, are likewife not unfrequent; as it is in this manner that moft
L_{4} inflammations
inflammations commepce'. Thus, after flanding fome time in fnow, the feet bccome affected with the pain of cold, and a common coryza, or inflammation of the membrane of the nofrils, fuccceds. It is probable that the internal inflammations, as pleurifies, or hepatitis, which are produeed after the cold paroxyfm of fever, originate in the fame manner from the fympathy of thofe parts with fome others, which wcre previoufly pained from quiefcence; as happens to various parts of the fyftem during the cold fits of fevers. In thefe cafcs it would feem, that the fenforial power of fenfation becomes accumulated during the pain of cold, as the torpor of the veffels occafioned by the defect of heat contributes to the inereafe or accumulation of the fenforial power of irritation, and that both thefe become excrted on fome internal part, which was not rendered torpid by the cold which affected the external parts, nor by its affociation with them ; or which fooner recovered its fenfibility. This requires further confideration.
4. An cxample of the fourth mode, or where the primary part of a fenfitive affociation of motions may have increafed action, and the fecondary part inereafed fenfation, may be takcn from the pain of the fhoulder, which attends inflammation of the membranes of the liver, fec Clafs IV. 2. 2.9.; in this circumftance fo much fenforial power feems to be expended in the violent
actions and fenfations of the inflamed membranes of the liver, that the membrancs affociated with them become quiefcent to their ufual fimuli, and painful in confequence.

There may be other modes in which the primary and fecondary parts of the trains of affociated fenfitive motions may reciprocally affect each other, as may be feen by looking over Clafs IV. in the catalogue of difeafes; all which may probably be refolved into the plus and minus of fenforial power, but we have not yet had fufficient obfervations made upon them with a view to this doctrine.
III. The affociated trains of our ideas may have fympathics, and their primary and fecondary parts affect each other in fome manizer fimilar to thofe above defcribed; and may thus occafion various curious phenomena not yet adverted 10, befides thofe explained in the Sections on Dreams, Reveries, Vertigo, and Drunkennefs; and may thus difturb the deductions of our reafonings, as well as the ftreams of our imaginations; prefent us with falfe degrecs of fear, attach unfounded value to trivial circumftances; give occafion to our carly prejudices and antipathics; and thus embarrafs the happinefs of our lives. A copious and curious harveft might be reaped from this province of fcience, in which, however, I fhall not at prefent wield my fickle.

SECT.

S E C T. XXXVI.

OF THE PERIODS OF DISEASES.

I. Mufcles excited by volition foon ceafe to contract, or by fenfation, or by irritation, owing to the exbauffion of fenforial power. Mufcles fubjecked to lcfs fimulus have their fenforial power accumulated. Hence the periods of fome fevers. Want of irritability after intoxication. II. r. Natural actions catenated with daily babits of lifc. 2. With folar periods. Periods of flecp. Of evacuating the bowels. 3. Natural actions catenated with lunar periods. Menfruation. Venereal orgafm of animals. Barrennefs. III. Periods of difeafed animal actions from flated returns of nocturnal cold, from folar and lunar influence. Pcriods of diumal fever, beefic fever, quotidian, tertian, quartan fever. Periods of gout, pleurijy, of fevers with arterial debility, and with arterial frength. Periods of rhaphania, of nervous cough, bemicrania, arterial bomorrbages, bemorrboids, hemoptoe, epilepfy, palfy, apoplexy, madncfs. IV. Critical days deperd on lunar periods. Lunar periods in the fmall pox.
I. If any of our mufcles be made to contract violently by the power of volition, as thofe of the fingers, when any one hangs by his hands on a fwing, fatigue foon enfues; and the mufcles ceafe to act owing to the temporary exhauftion of
the fpirit of animation; as, foon as this is again accumulated in the mufcles, they are ready to contract again by the efforts of volition.

Thofe violent mufcular actions induced by pain become in the fame manner intermitted and recurrent; as in labour-pains, vomiting, tenefmus, farangury; owing likewife to the temporary exhaution of the fpirit of animation, as above mentioned.

When any ftimulus continues long to act with unnatural violence, fo as to produce too encrgetic action of any of our moving organs, thofe motions foon ceafe, though the ftimulus continues to act; as in looking long on a bright object, as on an inch-fquare of red filk laid on white paper in the funfhine. See Plate I. in Sect. III. 1.

On the contrary, where lefs of the ftimulus of volition, fenfation, or irritation, has been applied to a mufcle than ufual; there appears to be an accumulation of the fpirit of animation in the moving organ; by which it is liable to act with greater energy from lefs quantity of fimulus, than was previounly neceffary to exeite it into fo great action; as after having been immerfed in fnow the cutaneous veffels of our hands are excited into ftronger action by the ftimulus of a lefs degree of heat, than would previounly have produced that effect.

From hence the periods of fome fever-fits may take their origin, either fimply, or by their acci-
dental coincidence with lunar and folar periods, or with the diurnal periods of heat and cold, to be treated of below; for during the cold fit at the commencement of a fever, from whatever caufe that cold fit may have been induced, it follows, 1. That the fpirit of animation muft become accumulated in the parts, which excert during this. cold fit lefs than their natural quantity of action. 2. If the caufe produeing the cold fit does not increafe, or becomes diminifhed; the parts bcfore benumbed or inactive become now excitable'tby finaller ftimulus, and are thence thrown into more violent action than is natural ; that is a hot fit fucceeds the cold one. 3. By the energetic action of the fyftem during the hot fit, if it continues long, an exhauftion of the firit of animation takes place ; and another cold fit is Iiable to fucceed, from the moving fyftem not being excitable into action from its ufual ftimulus. This inirritability of the fyftem from a toogreat previous ftimulus, and confequent exhauftion of fenforial power, is the caufe of the gencral debility, and ficknefs, and head-ach, fome hours after intoxication. And hence we fee onc of the caufes of the periods of fever-fits; which however are frequently combined with the periods of our diurnal habits, or of heat and cold, or of folar or lunar periods.

When befides the tendency to quicfeence occafioncd by the expenditure of fenforial power during
during the hot fit of fever, fome other caufe of torpor, as the folar or lunar periods, is neceflary to the introduction of a lecond cold fit; the fever becomes of the intermittent kind; that is, there is a pace of time intervenes between the end of the hot fit, and the commeneernent of the next cold one. But where no exteriour eaufc is neceffary to the introduction of the fecond cold fit; no fuch interval of health intervenes; but the fecond cold fit commenees, as foon as. the fenforial power is fufficiently cxhaufted by the hot fit; and the fever becomes continual.
II. 1. The following arc natural animal aesions, which are frequently eatenated with our daily habits of life, as well as excited by their natural irritations. The periods of hunger and thirft become eatenated with certain portions of time, or clegrees of exhauftion, or other diurnal habits of life. And if the pain of hunger be not relieved by taking food at the ufual time, it is liable to ceafe till the next period of time or other habits recur ; this is not only true in refpect to our general defire of food, but the kinds of it alfo are governed by this periodical habit; infomuch that beer taken to breakfaft will difturb the digeftion of thofe, who have been aecuftomed to tea; and tea taken at dinner will difagree with thofe, who have been aceuftomed to beer. Whence it happens, that thofe, who have weak fomachs, will be able to digen more food,
food, if they take their meals at regular hours; becaufe they have both the fimulus of the aliment they take, and the periodical habit, to affift their digeftion.
The periods of emptying the bladder are not only dependent on the acrimony or diftention of the water in it, but are frequently catenated with external cold applied to the flin, as in cold bathing, or warhing the hands; or with other habits of life, as many are accuftomed to empty the bladder before going to bed, or into the houfe after a journey, and this whether it be full or not.

Our times of refpiration are not only governed by the ftimulus of the blood in the lungs, or our dcfire of frefh air, but alfo by our attention to the hourly ohjects before us. Hence when a perfon is earneffly contemplating an idea of grief, he forgets to breathe, till the fenfation'in his lungs becomes very urgent; and then a figh fucceeds for the purpofe of more forceably pufhing forwards the blood, which is accumulated in the lungs.

Our times of refpiration are alfo frequently governed in part by our want of a fieady fupport for the actions of our arms, and hands, as in threading a needle, or hewing wood, or in fwimming; when we are intent upon thefe objects, we breathe at the intervals of the exertion of the pectoral mufcles.
2. The
2. The following natural animal actions are influenced by folar periods. The periods of fleep and of waking depend much on the folar period, for we are inclined to fleep at a certain hour, and to awake at a certain hour, whether we have had more or lefs fatigue during the day, if within certain limits; and are liable to wake at a certain honr, whether we went to bed earlier or later, within certain limits. Hence it appears, that thofe who complain of want of fleep, will be liable to fleep better or longer, if they accuftom themfelves to go to reft, and to rife at certain hours.

The periods of evacuating the bowels are generally connected with fome part of the folar day, as well as with the acrimony or diftention occafioned by the feces. Hence one method of correcting coftivenefs is by endeavouring to eftablifh a habit of evacuation at a certain hour of the day, as recommended by Mr. Lockc, which may be accomplifhed by ufing daily voluntary efforts at thofe times, joined with the ufual fiimulus of the material to be evacuated.
3. The following natural animal actions are connected with lunar periods. 1. The periods of female menfiruation are connected with lunar periods to great exactnefs, in fome inftances even to a few hours. Thefe do not commence or terminate at the full or change, or at any other particular part of the lunation, but after they have commenced at any part of it, they continue to
recur at that part with great regularity, unlefs difurbed by fome violent circumftanee, as cxplained in Scet. XXXII. No. 6. their return is immediately caufed by deficient venous abforption, which is owing to the want of the fimulus, defigned by nature, of amatorial copulation, or of the growing fetus. When the catamenia returns fooner than the period of lumation, it fhews a tendency of the conftitution to irritability; that is to debility, or defieiency of fenforial power, and is to be relieved by fmall dofes of fteel and opium.

The venereal orgafm of birds and quadrupeds feems to commence, or return about the moft powerful lunations at the vernal or autumnal equinoxes; but if it be difappointed of its object, it is faid to recur at monthly periods; in this refpect refembling the female catamenia. Whence it is believed, that women are more liable to become pregnant at or about the time of their catamenia, than at the intermediate times; and on this aecount they are feldom much miftaken in their reckoning of nine lumar periods from the laft menftruation; the inattention to this may fometimes have been the caufe of fuppofed barrennets, and is therefore worth the obfervation of thofe, who wifh to have children.
III. We now come to the periods of difeafed animal actions. The periods of fever-fits, which depend on the flated returns of nocturnal cold,
are difcufied in Sect. XXXII. 3. Thofe which originate or recur at folar or lunar periods, are alfo explained in Section XXXII. 6. There we fhall here enumerate; obferving, however, that it is not more furprifing, that the influence of the varying attractions of the fun and moon, fhould raife the ocean into mountains, than that it fhould affect the nice fenfibilities of animal bodies; though the manner of its, operation on them is difficult to be underftood. It is probable however, that as this influence gradually leffens during the courfe of the day, or of the lunation, or of the year, fome actions of our fyftem become lefs and lefs; till at length a total quiefcence of fome part is induced; which is the commencement of the paroxyfms of fever, of menftruation, of pain with decreafed action of the affected organ, and of confequent convulfion.

1. A diurnal fever in fome weak people is diftinctly obferved to come on towards evening, and to ceafe with a moif 1kin early in the morning, obeying the folar periods. Perfons of weak conftitutions are liable to get into better fpirits at the accefs of the hot fit of this evening fever; and are thence inclined to fit up late; which by further enfeebling them increafes the difeafe; whence they lofe their ftrength and their colour.

Hence delicate ladics, who do not ufe rouge, are obferved to become paler in the evening; rol. II.

M
which
which is probably owing to the circulation through the whole fyitem being lefs frequently performed in a given time, though the pulfe is quicker; and hence the mafs of blood becomes lefs frequently oxygenated in the lungs, and in confequence has a lefs florid colour. This pale colour therefore arifes from debility, which occurs to delicate people in the evening from the exhaufion of fenforial power during the day, and is generally attended by quicknefs of pulfe; by which circumftance the deloility may in fome degree be meafured.

Another caufe of the colour of the fkin may occafionally depend on the increafed action of the cutaneous capillaries, as in the hot fit of fever; or by the production of new blood veffels, as in topical inflammations. And palenefs may arife from the contrary fituations, as from inaction of the, cutaneous capillaries in the cold paroxyfin of fever, and from the coneretion of the fides of the finall cutaneous arteries, as in old age.
2. The periods of hectic fever, fuppofed to arife from abforption of matter, obey the diumal periods like the above, having the exacerbefence towards evening, and the remiffion carly in the morning, with fiveats, or diarrhcea, or urine with white fediment.
3. The periods of quotidian fever are either catenated with folar time, and return at the in-
tervals of twenty-four hours; or with lunar time, recurring at the intervals of about tiventy-five hours. Therc is great ufe in knowing with what circumftances the pcriodical return or new morbid motions are conjoined, as the moft cffectual times of exhibiting the proper medicines are thus determined. So if the torpor, which ufhers in an ague fit, is catenated with the lunar day ; it is known when the bark or opium, muft be given, fo as to cxert its principal effect about the time of the expected return. Solid opium fhould be given about an hour before the expected cold fit ; liquid opium and wine about half an hour; the bark repeatedly for fix or eight hours previous to the cxpected return.
4. The periods of tertian fevers, reckoned from the commencement of one cold fit to the commencement of the next cold fit, recur with folar intervals of forty-eight hours, or with lunar ones of about fifty hours. When the recurrence of thefe begins one or two hours earlier than the folar period, it fhews, that the torpor or cold fit is produced by lefs cxternal influenee; and therefore that it is more liable to degencrate into a fever with only remiffions; fo when menflruation recurs fooner than the period of lunation, it Thews a tendency of the habit to torpor or inirritability.
5. The periods of quartan fevers return at folar intervals of feventy-tivo hours, or at lunar ories of about fcventy-four hours and a half.

This kind of aguc appears moft in moift cold autumns, and in cold countries replete with marfhes. It is attended with greater debility, and its cold accefs more difficult to prevent. For where there is previoufly a deficiency of fenforial power the confitution is liable to run into greater torpor from any further diminution of it; two ounces of bark and fome ficel fhould be given on the day before the return of the cold parox$y \mathrm{fin}$, and a pint of wine by degrees a few hours before its return, and thirty drops of laudanum one hour before the expected cold fit.
6. The periods of the gout generally commence about an hour before fun-rife, which is ufually the coldeft part of the twenty-four hours. The greater periods of the gout feem alfo to obferve the folar influence, returning about the fame feafon of the ycar.
7. Thie periods of the pleurify recur with exacerbation of the pain and fever about fun-fet, at which time venefection is of moft fervice. The fame may be obferved of the inflammatory rheumatifin, and other fevers with arterial ftrength, which feem to obey folar periods; and thofe with debility feem to obey lunar ones.
8. The periods of fevers with arterial debility feem to obey the lunar day, having their accels daily nearly an hour later; and have fometimes two acceffes in a day, refembling the lunar effects upon the tidcs.
9. The
9. The periods of rhaphania, or convulfions of the limbs from rheumatic pain, feem to be connected with. folar influenee, returning at nearly the fane hour for weeks together, unlefs difturbed by the exhibition of powerful dofes of opium.

So the periods of tuffis ferina, or violent cough with flow pulfe, called nervous cough, recur by folar periods. Five grains of opium given at the time the cough commeneed difturbed the period, from feven in the evening to eleven, at which time it regularly returned for fome days, during which time the opium was gradually omitted. Then 120 drops of laudanum were given an hour before the accefs of the cough, and it totally ceafed. The laudanum was continued a fortnight, and then gradually difcontinued.
10. The periods of hemicrania, and of painful epilepfy, are liable to obey lunar periods, both in their diumal returns, and in their greater periods of weeks, but are alfo induced by other exciting eaures.
11. The periods of arterial hæmorrhages feem to return at folar periods about the fame hour of the evening or morning: Perhaps the venous hæmorrhages obey the lunar periods, as the catamenia, and hæmorrhoids.
12. The periods of the hæmorrhoids, or piles, in fome recur monthly, in others only at the greater lunar influence about the equinoxes.
13. The periods of hremoptoe fometimes obey folar influence, recurring early in the morning for feveral days; and fometimes lunar periods, recurring monthly; and fometimes depend on our hours of fleep. See Clafs I. 2. 1. 9.
14. Many of the firft periods of epileptie fits obey the monthly lunation with fome degree of aceuraey; others recur only at the moft powerful lunations before the vernal cquinox, and after the autumnal one; but when the conftitution has gained a habit of relieving difagrecable fenfations by this kind of exertion, the fit recurs from any flight caufe.
15. The attack of palfy and apoplexy are known to recur with great frequency about the equinoxes.
16. There are numeraus inftances of the ef \rightarrow fect of the lunations upon the periods of infanity, whence the name of lunatic has been given to thore afflicted with this difeafe.
IV. The eritieal days, in which fevers are fuppofed to terminate, have employed the attention of medieal philofophers from the days of Hippocrates to the prefent time. In whatever part of a lunation a fever commenees, whieh owes cither its whole caufe to folar and lunar influence, or to this in conjunction with other caufes; it would feem, that the effect would be the greateft at the full and new moon, as the tides rife higheft at thofe times, and would be the leaft at the quadratures; thus if a fever-fit
fhould eommence at the new or full moon, occafioned by the folar and lunar altraction diminifhing fome ehemical affinity of the partieles of blood, and thence decreafing their ftimulus on our fanguiferous fyriem, as mentioned in Sect. XXXII. 6. this effect will daily decreafe for the firft feven days, and will then increafe till about the fourteenth day, and will again cecreafe till about the twenty-firft day, and increafe again till the end of the lunation. If a fever-fit from the above caufe fhould commence on the feventh day after either lunation, the reverfe of the above. circumftances would happen. Now it is probable, that thofe fevers, whofe erifis or terminations are influeneed by lunations, may begin at one or other of the above times, namely at the changes or quadratures ; though fuffieient obfervations have not been made to afeertain this circumftance. Hence I conclude, that the finallpox and meafles have their critieal days, not governed by the times required for certain ehemical changes in the blood, whieh affect or alter the ftimulus of the contagious matter, but from the daily inereafing or decreafing effect of this lunar link of catenation, as explained in Section XVII, 3.3. And as other fevers terminate moft frequently about the feventh, fourteenth, twentyfirft, or about the end of four weeks, when no medical affiftance has difturbed theeir periods, I conclude, that thefe crifes, or terminations, are M. governed governed by periods of the lunations, though we are ftill ignorant of their manner of operation.

In the diftinct fmall pox the veftiges of lunation are very apparent; after inoculation a quarter of a lunation precedes the commencement of the fever; another quarter terminates with the complete eruption, another quarter with the complete maturation, and another quarter terminates the complete abforption of a material now rendred inofenfive to the conftitution.

SECT. XXXVII.

OF DIGESTION, SECRETION, NUTRITION.

1. Cryfals increafe by the greater attraction of their fides. Accretion by chemical precipitations, by welding, by preffure; by agglutination. II. Hunger, digcfion, why it cannot be imitated out of the body. LaEtcals abforb by animal Selcetion, or appetency. III. The glands and pores abforb nutritious particles by animal felection. Organic particlcs of Buffon. Nutrition applied at the time of clongation of fibres. Like inflammation. IV. It feems cafier to bave preferved animals than to reproduce them. Old age and dedth from inirritability. Three caufes of this. Original fibres of the organs of fonfe and mufcles unchanged. V. Art of producing, long life.
2. The larger cryftals of faline bodies may be conceived to arife from the combination of fmaller cryftals of the fame form, owing to the greater attractions of their fides than of their angles. Thus if eight cubcs were floating in a fluid, whofe friction or refiftance is nothing, it is certain the fides of thefe cubes would attract each other fronger than their angles; and hence that thefe eight fimaller cubes would fo arrange themfelves as.to produce one larger one.

There are other means of chemical accretion,
fueh as thic depofitions of diffolved calcareous or filiccous particles, as are feen in the formation of the fialactitcs of limeftone in Derbyhhirc, or of calcetione in Cornwall. Other means of adhefion are produced by heat and preffuie, as in the welding of iron-bars; and other means by firnple preffure, as in foreing two pieces of caoutchou, or elaftie gum, to adhere ; and lafily, by the agglutination of a third fubflance penetrating the pores of the other two, as in the agglutination of wood by means of animal gluten. Though the ultimate particles of animal bodies are held together during life, as well as after death, by their fecific attraction of cohefion, like all other matter; yct it does not appear, that their origival organization was produced by chemieal laws, and thcir production and increafe muft therefore only be looked for from the laws of animation.
II. When the pain of hunger requires relicf, certain parts of the material world, which furround us, when applied to our palates, excite into action the mufcles of deglutition; and the material is fivallowed into the ftomach. Here the new aliment becomes mixed with certain animal fluids, and undergoes a chemical proccis, termed digeftion; which, however, chemifiry has not yet. learnt to imitate out of the bodics of living animals or vegetables. This proeefs feems very fimilar to the faecharinc procefs in the lobes of farinaceous fecds, as of barlcy, when it begins

Sect. XXXVII. 3. 1. SECRETION, \&c.
to germinate; except that, along with the fugar, oil and mucilace are alfo produced; which form the chyle of animals, which is very fimilar to their milk.

The reafon, [imagine, why this chyle-making, or faccharine procefs, has not yet been imitated by chemical operations, is owing to the materials being in fuch a fituation in relpect to warmth, moifture, and motion; that they will immediately change into the vinous or acetous fermontation; except the new fugar be abforbed by the numerous lacteal or lymphatic veffels, as foon as it is produced; which is not eafy to imitate in the laboratory.

Thefe lacteal veffels have mouths, which are irritated into action by the ftimulus of the fluid which furrounds them ; and by animal felection, or appetency, they abforb fuch part of the fluid as is agreeable to their palate; thofe parts, for inftance, which are already converted into chyle, before they have time to undergo another change by a vinous or acetous fermentation. This animal abforption of fluid is almoft vifible to the naked eye in the action of the puncta lacrymalia; which imbibe the tears from the eye, and difcharge them again into the noftrils.
III. The arteries conftute another refervoir of a changeful fluid; from which, after its recent oxygenation in the lungs, a further animal felec-
tion of various fluids is abforbed by the numerous glands; thefe felect their refpective fluids from the blood, which is perpetually undergoing a chernieal change; but the felection by thefe glands, like that of the lacteals, which open their mouths into the digefting aliment in the flomach, is from animal appeteney, not from chemical affinity; fecretion cannot therefore be imitated in the laboratory, as it confifts in a felection of part of a fluid during the chemical change of that fluid.

The mouths of the lacteals, and lymphatics, and the ultimate terminations of the glands, are finer than can eafily be conceived; yet it is probable, that the pores, or interftices of the parts, or coats, which conftitute thefe ultimate veffels, may fill have greater tenuity; and that thefc pores from the above analogy muft poffefs a fimilar power of irritability, and abforb by their living energy the particles of fluid adapted to their purpofes, whether to replace the parts abraded or diffolved, or to elongate and enlarge themfelves. Not only every kind of gland is thus endued with its peculiar appetency, and felects the material agrecable to its tafte from the blood, but every individual pore acquires by animal felection the material, which it wants; and thus nutrition feems to be performed in a manner fo fimilar to feeretion; that they only differ in the
one retaining, and the other parting again with the particles, whieh they have felected from the blood.

They may, indced, differ in another eircumfranee; that in nutrition certain partieles of the circulating blood, which have not previoufly been ufed in the fyffem, are embraced, and form a folid part of the animal. Whercas in fome of the feeretions, thofe partieles appear to be imbibed by the glands, which have alrcady been ufed in the fyfacm, and probably abraded or detaehed from it into the eirculation: thefe are depofited in refervoirs for future ufe, as bile and mucus ; or excluded for other purpofes, as femen and tears; or evacuated fimply as feces and urinc. And it fhould be obferved, that all thefe feeretions are produced from their glands, in a very dilute ftate, mingled, I believe, with mueus diffolved in water; whieh is in part re-abforbed from the refervoirs of the glands, or from the eclls or furfaces of the body, that no unncceffary, wafte of animal matter may occur; which accounts for the urinary bladders of fifh, whieh would otherwife appear to be unneceffary, according to the obfervation of. Munro.

This way of aceounting for nutrition from ftimulus, and the confequent animal fclection of particles, is much more analogous to other phenomena of the animal mierocofm, than by having recourfe to the microfcopic animalcula, or organic particles already compounded muft themfelves require nutritive particles to continue their own exiftence. And muft be liable to undergo a change by our digeflive or fecretory organs; otherwife mankind would foon refemble by their theory the animals, which they feed upon. He, who is nourifhed by beef or venifon, would in time become horned; and he, who feeds on pork or bacon, would gain a nofe proper for rooting into the earth, as well as for the perception of odours.

The whole animal fyftem may be confidered as confifting of the extremities of the nerves, or of having been produced from them; if we except perhaps the medullary part of the brain refiding in the head and f_{p} ine, and in the trunks of the nerves. Thefe extremities of the nerves are either of thofe of locomotion, which are termed mufcular fibres; or of thofe of fenfation, which conftitute the immediate organs of fenfe, and which have alfo their peculiar motions. Now as the fibres, which conftitute the bones and membranes, poffeffed originally fenfation and motion; and are liable again to poffefs them, when they become inflamed; it follows, that thofe were, when firft formed, appendages to the nerves of fenfation or locomotion, or were formed from them. And that hence all thefe folid parts of the body, as they have originally confifted of extremities of nerves, require an appofition of nutritive particles
eles of a fimilar kind, contrary to the opinion of Buffon and Needham above recited.

Laftly, as all thefe filaments have poffeffed, or do poffefs; the power of contraction, and of confequent inertion or clongation; it fcems probable, that the nutritive particles are applied during their times of elongation; when their original confituent partielcs are removed to a greater diftanec from each other. For each mufcular or fenfual fibre may be confidcred as a row or ftring of beads ; which approach, when in contraction, and recede during its reft or elongation; and our daily experience fhews us, that great action cmaciates the fyftem, and that it is repaired during reft.

Somcthing like this is feen out of the body; for if a hair, or a fingle untwifted fibre of flax or filk, be foaked in water; it becomes longer and thieker by the water, which is abforbed into its pores. Now if a hair could be fuppofed to be thus immerfed in a folution of partieles fimilar to thofe, which compofe it; one may imagine, that it might be thus increafed in weight and magnitude; as the particles of oak-bark inereafe the fubftance of the hides of beafts in the procefs of making leather. I mention thefe not as philofophic analogies, but as frmiles to facilitate our ideas, how an accretion of parts maiy be effected by animal appetenees, or, feletions,
in a manner fomewhat fimilar to mechanical or chemical attractions.

If thofe new particles of matter, previoufly prepared by digeftion and fanguification, only fupply the places of thofe, which have been abraded by the actions of the fyftem, it is properly termed nutrition. If they are applied to the cxtremitics of the nervous fibrils, or in fuch quantity as to increafc the length or craffitude of them, the body becomes at the fame time enlarged, and its growth is increafed, as well as its deficiences repaired.

In this laft cafe fomething more than a fimple appofition or felection of particles feems to be neceffary; as many parts of the fyftem during its growth are caufed to recede from thofe, with which thay wcre before in contact; as the ends of the bones, or cartilages, rccedc from each other, as their growth advances: this procefs refembles inflammation, as appears in ophthalmy, or in the production of ncw flefh in ulcers, where old vcffels are enlarged, and neew ones produced; and like that is attended with fenfation. In this fituation the veffels become diftended with blood, and acquire greater fenfibility, and may thus be compared to the erection of the penis, or of the nipples of the breafts of women; while ncw particles become added at the fame time; as in the procefs of nutrition above defcribed.

When only the natural growth of the various
parts of the body is produced, a pleafurable fenfation attends it, as in youth, and perhaps in thofe, who are in the progrefs of becoming fat. When an unnatural growth is the confequence, as in inflammatory difeafes, a painful fenfation attends the enlargement of the fyftem.
IV. This appofition of new parts, as the old ones difappcar, felected from the aliment we take, firft enlarges and firengthens our bodies for twenty years; for another twenty years it kecps us in health and vigour, and adds ftrength and folidity to the fyftem, and then, gradually ceafes to nourifh us properly ; and for another twenty years we gradually fink into decay, and finally ceafe to act, and to exift.

On confidering this fubject one fhould have imagined at firft view, that it might have been eafier for nature to have fupported her progeny for ever in health and life, than to have perpetually reproduced them by the wonderful and myfterious procefs of generation. But it feems our bodies by long habit ceafe to obey the ftimulus of the aliment, which fhould fupport us. After we have aequired our height and folidity we make no more new parts, and the fyftem obeys the irritations, fenfations, volitions, and affociations, with lefs and lefs energy, till the whole finks into inaction.

Three caufes may confpire to render our nerves lefs excitable, which have been already men-
row. II.
tioned.
tioned. 1. If a fimmlus be greater than natural, it produees too great an exertion of the ftimulated organ, and in confequence exliauts the fpirit of animation ; and the moving organ ceafes to act, cren though the fimulus be continued. And though.reft will recruit this exhauftion, yet fome degree of permanent injury remains, as is evident after expofing the cyes long to too ftrong a light. 2. If excitations weaker than natural be applied, fo as not to excite the organ into action, (as when fmall dofes of aloes or rhubarb are exhibited,) they may be gradually increafed, withoutexciting the organ into action; which will thus aequire a habit of difobedience to the ftimulus; thus by increafing the dofe by degrees, great quantities of opium or winc may be taken without intoxication. Sce Sect. XII. 3. 1.
3. Another mode, by which life is gradually undermined, is when irritative motions continue to be produeed in confequence of fimulus, but arc not fuececded by fenfation; hence the ftimulus of contagious matter is not capable of produring fever a fecond time, becaufe it is not fucceeded by fenfation. Sce Sect. XII. 3.6. And hence, owing to the ivant of the gcneral pleafurable fenfation, which ought to attend digeftion and glandular fecretion, an irkfonenefs of life enfues; and, where this is in grater cximf. the melancholy of old age occurs, with torpor or debility.

From hence I conclude, that it is probable that the fibril $æ$, or moving filaments at the extremities of the nerves of fenfe, and the fibres which conftitute the mufcles (which are perhaps the only parts of the fyltem that are endued with contractile life) are not changed, as wc advance in years, like the other parts of the body; but only enlarged or elongated with our growth ; and in confequance they become lefs and lefs excitable into action. Whence, inftead of gradually changing the old animal, the generation of a totally new one becomes neceffary with undiminifhed excitability; which many years will contincte to acquire new parts, or new folidity, and then lofing its excitability in time; perifh like its parent.
V. From this idea the art, of preferving long health and life may be deduced; which muft confift in ufing no greater fiimulus, whether of the quantity or kind of our food and drink, or of external circumftances, fuch as heat, and cxercife, and wakefulnefs, than is fufficient to preferve us in vigour; and gradually, as we grow old to increale the ftimulus of our aliment, as the inirrita. bility of our fyftem increafes.

The dcbilitating effects afcribed by the poet Martial to the cxceffive ufe of warm bathing in Italy, may with equal propricty be applied to the warm rooms of England; " which, with the general exceffive ftimulus of firituous or fer-

$$
\mathrm{N}_{2} \quad \text { mented }
$$

Balnea, vina, Venus, corrumpunt corpora noflra: At faciunt vitame balnca, vina, Venus!

Wine, women, warmth, againft our lives combine; But what is life, without warmth, women, wine!

S E C T. XXXVIII.

OF THE OXYGENATION OF THE BLOOD IN THE LUNGS, AND IN THE PLACENTA.

I. Blood abforbs oxygene from the air, wuhence phofphoric acid, changes its colour, gives out beat, and .fome phlogific material, and acquircs an cthereal Spirit, which is diffipated in fibrous motion. 1I. The placenta is a pulmonary organ like the gills of fi/b. Oxygenation of the blood from air, from suatcr, by lungs, by gills, by the placenta; necc/fity of this oxygenation to quadrupcds, to f / h, to the fetus in utero. Placcntal veffels infortcd into the arteries of the mother. Ufc of cotyledons in cows. Why quadrupeds bave not fanguifcrous locbia. Oxygenation of the chick in the egg, of feeds. III. The liquor amnii is not excrementitious. It is nutritious. It is found in the efophagus and fiomach, and forms the meconium. Monflrous birtbs without beads. Qucfion of Dr. Harvey.
I. From the recent difcoveries of many ingenious philofophers it appears, that during refpiration the blood imbibes the vital part of the air, called oxygene, through the membranes of the lungs; and that hence refpiration may be aptly compared to a flow combution. As in combuftion the oxygene of the atmofphere unites
with fome phlogiftic or inflammable body, and forms an acid (as in the production of vitriolic acid from fulphur, or earbonic acid from charcoal, giving out at the fame time a quantity of the matter of heat; fo in refpiration the oxygene of the air unites with the phlogific part of the blood, and probably produces pholphorie or animal aeid, changing the eolour of the blood from a dark to a bright red; and probabiy fome of the matter of heat is at the fame time given out aceording to the theory of Dr. Crawford. But as the cevolution of heat attends almoft all chemieal combinations, it is probablc, that it alfo attends the feeretions of the various fluids from the blood; and that the conftant combinations or productions of new fluids by means of the glands conftitute the more general fource of animal heat; this feems evinced by the univerfal evolution of the matter of heat in the blufh of thame or of anger ; in which at the fame time an increafed feeretion of the perfpirable matter oc* curs; and the partial evolution of it from topieal inflammations, as in gout or rhcumatifm, in whieh there is a feeretion of new blood-veffels.

Some medical philofophers have afcribed the heat of animal bodies to the friction of the particles of the blood againft the fides of the veffels. But no perceptible heat has ever been produced by the agitation of water, or oil, or quickflyer, or other fluids; except thofe fluids have undergone
at the fame time fome chemical change, as in agitating milk or wine, till they become four.

Berides the fuppofed produotion of phofphoric acid, and change of colour of the blood, and the production of carbonic acid, there would appear to be fom thing of a more fubtile nature perpetually aequired from the atmofphere ; which is too fine to be long contained in animal veffels, and therefore requires perpetual renovation; and without which periect life cannot continue longer than a minute or two; this ethereal fuid is probably fecreted from the blood by the brain, and perpetually diffipated in the actions of the mufcles and organs of fenfe, but which neverthelefs may remain for a longer time, where there is little or no excrtion of the animal fibres, as in fyncope, and in thofe infects and other animals, which remain during the winter in a torpid ftate, and may not cntirely evaporate from defect of warmth, or moifture, or other eircumftances, as finails are faid to have revived after having been many years in a dry cabinet, and flics after having been many months drowned in wine, and other infects after having been frozen.

That the blood acquires fomething from the air, which is immodiatcly neceffary to life, appears from an experiment of Dr. Hare, (Philol. Tranfact: abridged, Vol. III. p. 239.) who found, "that birds, mice, \&c. would live as long again in a veffel, where he had erowded in double the

$$
\mathrm{N}_{4}
$$

quantity
quantity of air by a condenfing engine, than they did when confined in air of the common denfity." Whereas if fome kind of deleterious vapour only was exhaled from the blood in refpiration; the air, when condenfed into half its compafs, could not be fuppofed to reeeive fo much of it.
II. Sir Edward Hulfe, a phyfician of reputation at the beginning of the prefent century, was of opinion, that the placenta was a refpiratory organ, like the gills of fifh; and not an organ to fupply nutriment to the fœetus; as mentioned in Derham's Phyfico-theology. Many other phyficians feem to have efpoufed the fame opinion, as noticed by Haller. Elem. Phyfiologiæ, T. 1. Dr. Gipfon publifhed a defenee of this theory in the Medical Effays of Edinburgh, Vol. I. and II. which doctrine is there controverted at large by the late Alexander Monro; and fince that time the general opinion has been, that the placenta is an organ of nutrition only, owing perhaps rather to the authority of fo great a name, than to the validity of the arguments adduced in its fupport. The fubject has lately been refumed by Dr. James Jeffray, and by Dr. Forefter Freneh, in their inaugural differtations at Edinburgh and at Cambridge; who have defended the contrary opinion in an able and ingenious manner; and from whofe Thefes I have extracted many of the following remarks.

Firf, by the late difcoveries of Dr. Priefley, M. La-
M. Lavoifier, and other philofophers, it appears, that the bafis of atmofphcrical air, called oxygene, is received by the blood through the mcm branes of the lungs; and that by this addition the colour of the blood is changed from a dark to a light red. Secondiy, that water poffeffes oxygene alfo as a part of its compofition, and contains air likewife in its pores; whence the blood of fifh receives oxygene from the water, ' or from the air it contains, by means of their gills, in the fame manner as the blood is oxygenated in the lungs of air-breathing animals; it changes its colour at the fame time from a dark to a light red in the veffels of their gills, which conffitute a pulmonary organ adapted to the medium in which they live. Thirdly, that the placenta confifts of arteries carrying the blood to its cxtremities, and a vein bringing it back, refembling exactly in ftructure the lungs and gills above mentioned; and that the blood changes its colour from a dark to a light red in paffing through thefe veffels.

This analogy betwcen the lungs and gills of animals, and the placenta of the fetus, extends through a great variety of other circumftances; thus air-breathing creatures and fifh can live but a few minutes without air or water; or when they are confined in fuch air or water, as has becn fpoiled by their own refpiration; the fame happens to the fetus, which, as foon as the plaeenta
is feparated from the uterus, muift either expand its lungs, and receive air, or dic. Hençe from the ftructure, as well as the ufe of the placenta, it appears to be a refpiratory organ, like the gills of fifh, by which the blood in the fetus beeomes oxygenated.

From the terminations of the placental veffels not being obferved to bleed after being torn from the uterus, while thofe of the uterus effufe a great quantity of florid arterial blood, the terminations of the placental veffels would feem to be inferted into the arterial ones of the mother; and to reccive oxygenation from the paffing eurrents of her blood through their eoats or membranes; which oxygenation is proved by the ehange of the eolour of the blood from dark to light red in its paffage from the placental arteries to the placontal vein.

The eurious ftructure of the eavities or lacunæ of the placenta, demonftrated by Mr. J. Hunter, explains this eireumftanee. That ingenious philofopher has fhewn, that there are numerous eavities or laeunæ formed on that fide of the plaeenta, whieh is in contact with the uterus; thofe carities or eclls are filled with blood from the maternal arteries, whieh open into them ; which blood is again taken up by the maternal veins, and is thus perpetually ehanged. While the terminations of the placental arteries and veins are fpread in fine reticulation on the fides of thefe cells_{4}
cells. Aind thus, as the growing fetus requires greater oxygenation, an apparatus is produced refembling cxactly the air-cells of the lungs.

In cows, and other ruminating animals, the internal furface of the uterus is unequal like hollow cups, which have been called cotyledons; and into thefe eavities the prominencies of the numerous placentas, with which the fetus of thofe animals is furnifhed, are inferted, and furicly adhere; though they may be extracted without effufion of blood. Thefe inequalities of the uterus, and the numerous placentas in confequenee, feem to be defigned for the purpofe of expanding a greater furface for the terminations of the placental veffels for the purpofe of receiving oxygenation from the uterinc ones; as the progeny of this clafs of animals are more completely formed before their nativity, than that of the carnivorous claffes, and muff thence in the latter weeks of pregnancy require greater oxygenation. Thus calves and lambs can walk about in a few minutes altcr their birth; while puppies and kittens remain many days without opening their eyes. And though on the fcparation of the cotyledons of ruminating animals no blood is effufed, yet this is owing clearly to the greatcr potver of contraction of thcir uterine lacunæ or alveoli. Sce Medical Effays, Vol. V. page 144. And from the fame caufe they are not liable to a fanguiferous menftruation.

The neeeffity of the oxygenation of the blood in the fetus is farther illuftrated by the analogy of the ehick in the egg; which appears to have its blood oxygenated at the extremities of the veffels furrounding the yolk; which are fpread on the air-bag at the broad end of the egg, and may abforb oxygene through that moift membrane from the air confined behind it; and whieh is fhewn by experiments in the exhaufted receiver to be changeable though the fhell. See Phytologia, Scect. III.

This analogy may even be extended to the growing feeds of vegetables; which were thewn by Mr. Scheele to require a renovation of the air over the water, in which they were confined. Many vegetable feeds are furrounded with air in their pods or receptaeles, as peas, the fruit of ftaphylea, and lichnis vefiearia; but it is probable, that thofe feeds, after they are fhed, as well as the fpawn of fifh, by the fituation of the former on or near the moift and aerated furface of the earth, and of the latter in the ever-ehanging and ventilated water, may not be in need of an apparatus for the oxygenation of their firft blood, before the leaves of one, and the gills of the other, are produced for this purpofe. Sce Phytologia, Sect. III.
III. 1. There are many arguments, befides the frrict analogy between the liquor amnii and the albumen ovi, which fhew the former to be a nu-
tritive fluid; and that the fetus in the latter months of pregnancy takes it into its flomach: and that in confequence the placenta is produced for fome other important purpofe.

Firf, that the liquor amnii is not an excrementitious fluid is evinced, beeaule it is found in greater quantity, when the fetus is young, decreafing after a certain period till birth. ${ }^{v}$ Haller afferts, " that in fome animals but a fmall quantity of this fluid remains at the birth. In the eggs of hensit is confumed on the eighteenth day, fo that at the exclufion of the chick fcarcely any remains. In rabbits before birth there is pone." Elem. Phyfiol. Had this been an excrementitious fluid, the contrary would probably have occurred. Secondly, the fkin of the fetus is covered with a whitifh cruft or pellicle, which would feem to preclude any idea of the liquor amnii being produced by any exfudation of perfpirablc matter. And it cannot confift of urine, becaufe in brute animals the urachus paffes from the bladder to the alantois for the exprefs purpofe of carrying off that fluid; which however in the human fetus feems to be retained in the diftended bladder, as the feces are accumulated in the bowels of all animals.
2. The nutritious quality of the liquid, which furrounds the fetus, appears from the following confiderations. 1. It is coagulable by heat, by nitrous

nitrous acid, and by fpirit of wine, like milk, ferum of blood, and other fluids, which daily experience cvinces to be nutritious. 2. It has a faltifh tafte according to the aecurate Baron Haller, not unlike the whey of milk, which it even refembles in fmell. 3. The white of the egg which conftitutes the food of the chiek, is fhewn to be nutritious by our daily cxperience; befides the experiment of its nutritious effects mentioned by Dr. Fordyce in his late, Treatife on Digeftion, p. 178; who adds, that it much refcmbles the effential parts of the ferum of blood.
3. A fluid fimilar to the fluid, with which the fetus is furrounded, execpt what little change may be produced by a beginning digeftion, is found in the fame manner in the fomach of the chick.

Numerous hairs, fimilar to thofe of its fkin, are perpetually found among the contents of the fomach in new-born ealves; which muft therefore have lieked themfelves before their nativity. Blafii Anatom. See Sect. XVI. 2. on Inftinct.

The chick in the egg is feen gently to move in its furrounding fluid, and to open and fhut its mouth alternately. The fame has been obferved in puppies. Haller's El. Phyf. I. 8. p. 201.

A column of ice has been feen to reach down the ofophagus from the mouth to the ftomach
in a frozen fetus; and this ice was the liquor amnii frozen.

The meconium, or firft feccs, in the bowels of new-born infants evince, that fomething has been digefted; and what could this be but the liquor anmii together with the recrements of the gaftric juice and gall, which were neceflary for its digcftion?

Another argument to evince, that the fetus is nourithed by aliment taken into the fomach and intefitines by the mouth during the latter months of pregnancy, may be deduced from the liver of the fetus; which Haller obferves to bc very large; not like the lungs, as if dcfigned for the future man after nativity. Phyfiol. Vol. VI. p. 618 . Whence a fecretion of bile muft already exift, which can ferve no purpofe but to be mised with the digefting aliment.

There have been recorded fome monftrous births of animals without heads, and confcquently without mouths, which fecm to have been delivered on doubtful authority, or from inaccurate obfervation. There are two of fuch monftrous productions however better attefted; one of a human fetus, mentioncd by Gipfon in the Scots Medical Effays; which having the gula imperrious was furnifhed with an aperture into the wind-pipe, which communicated below into the gullet; by means of which the liquor amnii might be taken into the ftomach before nativity without
without danger of fuffocation, while the fetus had no occafion to breathe. The other monftrous fetus is defcribed by Vander Wiel, who afferts that he faw a monftrous lamb, which had no mouth; but inftead of it was furnifhed with an opening, in the lower part of the neck into the ftomach. Both thefe inflances evidently favour the doctrine of the fetus being nourifhed by the mouth; as otherwife there had been no neceffity for new or unnatural apertures into the fomach, when the natural ones were defieient.

From thefe facts and obfervations we may fafeIy infer, that the fetus in the womb is nourifhed by the fluid which furrounds it; whieh during the firf period of geftation is abforbed by the naked lacteals; and is afterwards fwallowed into the ftomachand bowels, when thefe organs are perfected; and laftly that the placenta is an organ for the purpofe of giving due oxygenation to the blood of the fetus; whieh is more neceffary, or at leaft more frequently neeeffary, than even the fupply of food.

The queftion of the great Harvey becomes thus eafily anfwered. "Why is not the fetus in the womb fuffocated for want of air, when it remains there even to the tenth month without refpiration: yet if it be born in the feventh or eighth month, and has once refpired, it becomes immediately fuffoeated for want of air, if its refpiration be obftructed?"

For further information on this fubject, the reader is referred to the Tentamen Medicum of Dr. Jeffray, printed at Edinburgh in 1786. And it is hoped that Dr. Forefter will fome time give his thefes on this fubject to the public.

SECT. XXXIX.

OF GENERATION.

Felix, qui čaufas altâ caligine merfas
Pandit, et evolvit tenuiffima vincula rerum. Anon.

1. Habits of aciing and foeling of individuals attend the fout into a future life, and attend the new cnibryon at the time of its production. The new spock of entity abforbs nutrimont, and reccives oxyycne. Spreads the tcrminations of its vec/cls on cells, which communicate with the artcrics of the utcrus; fometimes with thofe of the peritoncum. Aftcrwards it fwallows the liquor amiiiz, wbich it produces by its invitation from the uterus, or peritoncum. Like infects in the beads of calves and Jocep. Why the white of egg is of two confjefencics. Why nothing is found in quadrupcds fimilar to the yolk, nor in mof vecctable fecds. II. I. Eggs of frogs and fijb impregnated out of their bodics. Eggs of foruls which are not fecundated, contain only the nutriment for the cmbryon. The embryon is proauced ly the male, and the nutriment by the female. Animalcula in fomine. Profufion of naturc's births. 2. Vcgctables viviparous. Buds and bulbs bave cach a father but no mother. Vefols of the leaf and bud inofculate. The paternal off: Pring exaitly refembles the parcit. 3. Infcets impregnatcd for $\sqrt{2} x$ gencrations. Polypus branches like buds. Creeping roots. Viviparous flowers. Tanna, volvox. Eve from Adam's rib. Semen not a filmulus to the cgg. III. I. Emtryous not originaily created suithin other embryons. Organized
ganized matter is not fo mimute. 2. All the parts of the enbryon are not formed in the male parent. Crabs produce their legs, worms produce their beads and tails. In wens, cancers, end inflammations, new veffels are forned. Niules partake of the forms of both parents. Hair and nails grow by clongation, not by difention. 3. Organic particles of Buffon. IV. 1. Rudiment of the embryon a fimple living flament, becomes a living ring, and then a living tubc. 2. It acquires new irritabilities, and fenfuilitics with new organizations, as in wounded frails, polypi, moths, gnats, tad-poles. Hence new parts are aequired by addition not by diftention. 3. All parts of the body grow if not confined. 4. Fetufes deficient at their extremities, or bave a duplicature of parts. Monflours birtbs. Double parts of vegetables. 5. Mules cannot be formed by difention of the feminal ens. 6. Families of animals from a mixture of their orders. Mules imperfoci. 7. Animal appetency like chemieal affinity. Vis fabricatrix and medicatrix of nature. 8. The changes of animals before and after nativity. Similarity of their fructure. Changes in thent from luft, butyer, and danger. Aill warm-blooded animals derived from one living filament. Cold-blooded animals, infoits, worms, ve-setables, derived alfo from one living flament. Nale ainimals bave teats. Mule pirgeon gives milk. The whorld itfolf generated. The cauje of caufes. A fatate of probation and refponfsislity. V. I. Eficient caufe of the colours of birds eggs, and of bair and feathors, wibich become wubite in fuowy countries. Imagination of the fema'e colours the egg. Ideas or mations of the retina imitated by the extremities of the nerves of touch, or rete mucofum. 2. Nutriment Jupplied by the female of three kina's. Her inagination can only affect the firg kind. Atules how produced, and mulattoes. Organs of reproduciion why deficient in mules. Figgs with) double yolks. VI. I. Valious fecictions pro-
duced by the cxtromitics of the veffels, as in the glarids. Contagious mattcr. Many glands afficied by pleafurable idcas, as thofe which fecrete the fomen. 2. Suails and zuorms are bermapbroditc, yet camot impregnatc thomficlucs. Final catys of this. 3. The imagination of the male forms the fox. Ietcas, or motions of the nerves of vifion or of touch, arc imitated by the ultimate cxtremities of the glands of the cefles, which matk the fex. This effet of the imaginarion belongs only to the male. The fex of the cmbryon is not owing to accident. 4: Caufes of tbe changes in animals from imagiuation as in monfors. From the male. Fron the fimale. 5. Mifiarriages from foar. 6. Power of tion imagination of the male over the colour, form, and fox of the progeny. An inflance of. 7. Ait of geniration accompanied with ideas of the male or female form. Art of begetings heautiful childron of citber fon. VII. Recapitulation. VIII. . I. Appcndix. Buds are individuals. Confy of plitumula caudex and radiclc. Evcry part of the caudex can germinate. A triple tree by ingraftiment. A lateral vegetable mule produced by thrac parents. Conforva fontinalis. 2. Latcral propagation of polypus, and bydra fcentorca. The balves of two polypi made to unite. Ingraftment of vegctables. Latcral mulc. 3. Now bud of a doubly ingrafted thee bas three kinds of caudcx. Triple mule produced from warious parts of tbe parent trec. 4 . Earthworms cut afunder gencrate a nerw bead, and a new taii. So tbe caudexes of the buds of trecs. The whole cmbryon not formed at the fame time. 5. Parts of the long caudex of the new bud are focreted from cowedpondent parts of the parcut bud, and unite boneatb the cuticle. Evcry part of the caudex can sciminate. Thele;new buds refomble the part of the flock, where they arife. Lateral mulc from many parents. If a triple fixual mulc? 6. Gravitation, chemical affimity, ckicincitily, magnetifm. Power to attralt. Aptitude to be attralled.
attracted. A magnct poffiffes power to attract, iron an aptitude io be attrasied. So of cleivificed bodies, and chemical affinitic: Or two bodies may reciprocally attract each other. 7. Union of animal with inanimate matter. Unian of two living particles. The animal fenfe poffefes appetency to unite, the inanimate material poffeffes aptitude to be united. Vitality of the blood. Fibrils with appetencies, molecules with propenfitics. S. Fibrils auith formative appetencies. Molecrles with formative propenfities. Like fingle and double affinities. Paffions of bunger and of love. Thirft. Suckling ebildien. Mode of lateral propagation. 9. Superflucus vital particles produced in the blood. Secreted by fexual glands. Combine beneath the cuticle of trees. Acquire now appetencies, and form fecondary parts of the embrryon. So the pafion for gencration, and defire for animal food, and the new attrations of bodies chemically combined. New molecules are formed by the fexual g!ands at puberty, and in the pectoral ones. 10. Different fibrils and molecules are detasbed from different parts of the parent cardex. to form the filial one: So in the fexual propagation of vegetables: and by their combination produce an cmbryon, and acquire now appetencies and form fecondary parts, as in diocious flowers. II. Threcfold lateral mules. So fexual mules refemble parts of their parents according to the combinations of the fibrils and molecules, and produce fecondary parts, otherwife they would refemble the father only. Epigram from Martial. IX. I. Various parts of the new conbryen produced at the fame time. Oiganized bodies too large to be fecreicel. Primary aird fecondaiy formation of parts of the fetus. M. Buffor's theory differs from this. Moles and monflous births. An cmbryon is not an individual, till the neives unite in the brain. 2. The brais and beart gencrated at the fame time. 3. Organic particles 62 large to pafs the glands and capillarics. Not fo the
formative particles. Hence the latter cannot combine in the blood. 4. Formative particles do not combine in the receptacles of the fexual glands, as thofe of the male diffor from innfe of the fomale. Not fo in Buffon's theory. 5. The whole cmbryon not producced at the fame time. Primary and fecondary parts. Secondary formation of the caucicx of buds, of diffovered carth worms, of the legs of crabs, of buman tecth, and of a thumb. X. I. Solitary latcral gencration, and folitary internal genciation. Ailimalized parti:les of primary combination, are fofecreted, combine, and form primary organizations. The coudex gemme produces fccondary parts, and commences its formation in feveral places at the fame time. Refembles. the farent more than a fexual progeny. The polypus and bydra. 2. Solitary internal gencration of aphis, tenia, actinia, volvox, produces a viviparous off spring, not an oriparous one. Difference of lateral and internal gencration. 3. He mapbrodite foxual gencration in mof fowers, and fome inficts. Summit-bulbs of fome vegctables ars a ferual progeny. Sexual organs in be mapbrodites are Separate, but focrete the mafculine and fomininc formative particles from the fame mals of blood. Why feedling apple-trees fometimes refemble the parcnt, fometimes not. Number of Dpecics increajed by reciprocal generation. 4. In fimple fixual gencration the mafculine and fominine focretions are from different mafjes of blood. Thefe animals were originally bcrmaphrodites. The mode of the production of the new embryon. Secretion differs from nutrition. New cmbryon begins in more perts than one. Acquircs new aphetencies, and fabricates fecondary parts. Scxual organs are fecondary parts, not primary ones. So is the difference of the malc and fimale forms. Vegetable and animal fecondary produsions. 5. Secils. Eggs. Spawia differs from eggs, as it onlarges along with the embryon like
the membranes of the fetus in utero. XI. I. Inanimate cryftals. Animated organization. Microfcopic animalcula from flagnation of vegetable and animal fluids. Do not gencrate. 2. Second kind of animal production commences in more points than one: not like microfcopic animals; as truffles, fungi, polypi, hydra. 3. Other vegetables are hermaphrodite, but botb their fexual glands feciete from the fame mafs of blood. 4. Other vegetables bave acquired jeparate fexes, and fecrete the prolific fuids from different maffes of blood. The embryon begins in more points in the more complicated animals. Tibe primary parts fabricate \int econdary ones, as in the clafs dioccia of vegetables, and in fexual animals. Nature is yet in ber infancy. 5. Spontaneous production of microfcopic animalcules. Is $\sqrt{2}$ milar to aftual generation. The firft animacules generate others, and improve. Seedling tulip-root. Aphis. Immutable laws inipreffed on matter. XII. Conclufion. Of caufe and effect. The atomic philofophy leads to a firft cause.
I. The ingenious Dr. Hartley in his work on man, and fome other philofophers, have been of opinion, that our immortal part acquires during this life certain habits of action or of fentiment, which become for ever indiffoluble, continuing after death in a future fate of exiftence; and add, that if thefe habits are of the malevolent kind, they muft render the poffeffor miferable even in Heaven. I would apply this ingenious idea to the generation or production of the embryon, or neav animal, which partal es to much of the form and propenfitics of the parent.

Owing to the imperfection of language the
offspring is termed a new animal, but is in truth a branch or clongation of the parent; fince a part of the cmbryon-animal is, or was, a part of the parent ; and therefore in ftrict language it cannot be faid to be entircly new at the time of its production; and thercfore it may retain fome of the habits of the parent-fyftem.

At the earlieft period of its exiftence the cmbryon, as fecreted from the blood of the male, would feem to confift of a living filament with certain capabilities of irritation, fenfation, volition, and affociation ; and alfo with fome acquired habits or propenfitics peculiar to the parent: the former of thefe are in common with other animals; the latter feem to diftinguifh or produce the kind of animal, whether man or quadruped, with the fimilarity of feature or form to the parent. It is difficult to be conceised, that a living entity can be feparated or produced from the blood by the action of a gland; and which fhall afterwards become an animal fimilar to that in whofe veffels it is formed; even though we fhould fuppofe with fome modern theorifts, that the blood is alive; yet cvery other hypothefis conccrning generation refts on principles ftill more difficult to our comprehenfion.

At the time of procreation this fpeck of cntity is reccived into an appropriated nidus, in which it muft acquire two circumftances neceffary to its life and growth; one of thefe is food or fuftenance,
nance, whieh is to be received by the abforbent mouths of its veffels; and the other is that part of atmofpherical air, or of water, which by the new chemiftry is termed oxygene, and which affects the blood by paffing through the eoats of the veffels which contain it. The fluid furrounding the embryon in its new habitation, which is called liquor amnii, fupplies it with nouriflment; and as fome air eannot but be introduced into the uterus along with a new embryon, it would feem that this fame fluid would for a fhort time, fuppofe for a few hours, fupply likewife a fufficient quantity of the oxygene for its immediate exiftence.

On this aceount the vegetable impregnation of aquatic plants is performed in the air ; and it is probable that the honey-cup or nectary of vegetables requires to be open to the air, that the anthers and ftigmas of the flower may have food of a more oxygenated kind than the common vegctable fap-juice.

On the introduction of this primordium of entity into the uterus the irritation of the liquor amnii, which furrounds it, exeites the abforbent mouths of the neiv veffels into action; they drink up a part of it, and a pleafurable fenfation accompanies this new action; at the fame time the chemical affinity of the oxygene acts through the veffels of the rubefcent blood; and a previous

want, or difagreeable fenfation, is relieved by this procefs.

As the want of this oxygenation of the blood is perpetual, (as appears from the ineeffant neceffity of breathing by lungs or gills,) the veffels beeome extended by the efforts of pain or defire to feek this neeeffary object of oxygenation, and to remove the difagreeable fenfation, which that want occafions. At the fame time new partieles of matter are abforbed, or applied to thefe extended veffels, and they become permanently elongated, as the fluid in contact with them foon lofes the oxygenous part, which it at firft poffeffed, which was owing to the introduction of air along with the embryon. Thefe new bloodveffels approach the fides of the uterus, and penctrate with their fine terminations into the veffels of the mother; or adhere to them, acquiring oxygene through their coats from the paffing currents of the arterial blood of the mother. See Sect. XXXVIII. 2.

This attaehment of the placental veffcls to the internal fide of the utcrus by their own proper efforts appears further illuftrated by the many inftances of extra-uterine fetufes, whieh have thus attaehed or inferted their veffcls into the peritoncum ; or on the vifcera, exactly in the fame manner as they naturally infert or attach them to the uterus.

The abfurbent refels of the embryon continue to drink up nourifhment from the fluid in which they fivim, or liquor amnii ; and which at firft needs no previous digentive preparation; but which, when the whole apparatus of digeftion beeomes complete, is fwallowed by the mouth into the ftomach, and being mixed with faliva, gaffric juice, bile, pancreatic juice, and mucus of the inteftines, beeomes digelted, and leaves a recrement, which produces the firft feces of the infant, called meconium.

The liquor amnii is fecreted into the uterus, as the fctus requires it, and may probably be produced by the irritation of the fetus as an cxtraneous body; fince a fimilar fluid is aequired from the peritoneum in cafes of extra-utcrine geftation. The young caterpillars of the gadfly placed in the fhins of cows, and the young of the iehncumonfly placed in the backs of the caterpillars on cabbages, feem to produce their nourifhment by their irritating the fides of their nidus. A vegetable feeretion and concretion are thus produced on oak-leaves by the gall-infect, and by the cynips in the bedeguar of the rofe; and by the young grafshopper on many plants, by which the animal furrounds itfelf with froth. But in no cireumftance is extra-uterine geftation fo exactly refembled as by the eggs of a fly, which are depofited in the frontal finus of fheep and calves. Thefe eggs float in fome ounces of fluid collceted
in a thin pellicle or hydatid. This bag of fluid compreffes the optic nerve on one fide, by which the vifion being lefs diffinet in that eyc, the animal turns in perpetual circles towards the fide affected, in order to get a miore accurate view of objects; for the fame reafon as in fquinting the affected eye is turned away from the object contemplated. Shecp in the warm months keep their nofes clofe to the ground to prevent this fly from fo readily getting into their noftrils.

The liquor ammii is fecreted into the womb $a s$ it is requircd, not only in refpect to quantity, but, as the digeftive powers of the fetus become formed, this fluid becomes of a different confiftence and quality, till it is exchanged for milk after nativity. . Haller. Phyfiol. V. J. In the egg the white part, which is analogous to the liquor amnii of quadrupeds, confifis of two diftinct parts; one of which is more vifcid, and probably more difficult of digeftion, and more mutritive than the other; and this latter is ufed in the laft week of incubation. The yolk of, the egg is a fill fironger or more nutritive fluid, which is drawn ap into the bowels of the chick juft at its exclufion from the fhell, and ferves it for nomrithment for a day or two, till it is able to digeft, and has Jearnt to choofe the harder feeds or grains, which are to afford it fuftenance. Notling analogous to this yolk is found in the fetus of lactiferous minals, as the milk is another nutritive fluid ready
ready prepared for the young progeny; it is alfo a curious circumftance, that the firft milk of female animals after parturition is much thicker, like the yolk of egg, and much more coagulable, than that whieh is fecreted after a few days, when the digeftive powers of the offspring are become ftronger.

The yolk therefore is not neceffary to the flawn of fifh, the eggs of infects, or for the feeds of regctables; as their embryons have probably their food prefented to them as foon as they are excluded from their fhells, or have extended their roots. Whence it happens that fome infects produce a living progeny in the fpring and fummer, and eggs in the autumn; and fome regctables have living roots or buds produced in the place of fecds, as the polygonum viviparum, and magical onions. Sce Botanic Garden, p. ii. art. Anthoxanthum.

There fecms however to be a refervoir of nutriment prepared for fome feccls befides their cotyledons or fced-leaves, which may be fuppofed in lome meafure analogous to the yolk of the egg. Such are the faccharine juices of apples, grapes, and other fruits, which fupply nutrition to the feeds after they fall on the ground. And fuch is the milky juice in the centre of the cocoa-nut, and part of the kerncl of it; the fame I fuppofe of all other monocotyledon feeds, as of the palms, graffes, and lilics. The milky juice in the centre
of the cocoa-nut feems curioufly to refemble the chyle of animals, as it contains oil diffufed with mueilage and fugar, whence arifes its white colour; whereas the chyle or fap-juice of vegetables, which exfudes from wounds of birch or mapletrees in the vernal months, is tranfparent, and confifts only of fugar and mucilage, and in this circumfance differs from the chyle of animals.
II. J. The procels of gencration is fill involved in impenetrable obfeurity, conjectures may neverthelefs be formed concerning fome of its circumfances. Firft, the eggs of fifh and frogs are impregnated, after they leave the body of the female; becaufe they are depofited in a fluid, and are not therefore covered with a hard fhell. It is however remarkable, that neither frogs nor fifh will part with their fpawn without the prefence of the male; on which account female carp and gold-fifh in fmall ponds, where there are no males, frequently die from the diftention of their growing fpawn. 2. The eggs of fowls; which are laid without being impregnated, are feen to contain only the yolk and white, which arc evidently the food or fuftenance for the future chick. 3. As the eicatricula of thefe eggs is given by the cock, and is cvidently the rudiment of the new animal; we may conclude, that the embryon is produced by the male, and the proper food and nidus by the female. For if the fenale be fuppofed to form an equal part of the em-
bryon, why fhould fhe form the whole of the apparatus for nutriment and for oxygenation? The male in many animals is larger, fironger, and digefts more food than the female, and therefore fhould contibute as much or more towards the reproduction of the fpecies; but if he contributes only half the embryon and none of the apparatus for fuftenance and oxygenation, the divifion is unequal ; the ftrength of the male, and his confumption of food are too great for the effect, compared with that of the female, which is contrary to the ufual courfe of nature.

It has been fuppofed by fome inquirers into the procefs of generation, that the male femen in many animals could not come into contact with the ovum of the female, and they have hence fuppofed, that an aerial or ethereal emanation from the femen virile might ferve the purpofe of ftimulating into life the ovum muliebre, becaufe in the vcgetable ftigma of fome flowers no veffels have been feen to receive and tranfmit the burft-. ing anther-duft; and becaufe it is not poffible, that the ejaculatio feminis in quadrupeds could fond it through the fallopian tubes to the veficles of the ovaria.

In refpect to the analogies from other animals, 1 ff , It may be obferved, that in the generation of frogs, it is well known, that the male fperm is effufed in contact with the female fpawn, as it leaves her body, and that in fifh the male ferm
is likeivife effufed on the female fpawn after its production. 2 d . In refpect to vegetables, it muft be recollected, that their veffels are fo minute in diameter, that they have not in gencral been of fufficient fize to be injected by coloured fluids; and are not thence fo vifible by mierofeopes as thofe of animals, and that it is probable, thofe of the figma or piffillum of flowers, which are defigned to abforb the folution of the anther-duft, which adheres to the moift ftigma, may be always empty, or have their mouths clofed, except when they are ftimulated into action by the antherduft, and may thence more eafily efcape obfervation. Nor do I know, that any one has endeavoured to detect thefe veffels by experiments with coloured liquids applicd along with the male farina on the ftigma for its abforption, or by diffecting thic piftillum as in its recent or dry ftate, or by obferving it in a ftate of charcoal.

In regard to quadrupeds, Dr. Haighton has Thewn by a number of curious experiments on rabbits, publifhed in the Philofoph. Tranfact. for the year 1797, that the male femen does not permeate the fallopian tubes, and eonfequently never arrives at the femalc ova, either in a liquid or acrial ftate; but that it is by the fimulus of the femen in the neck of the utcrus; that the veficles of the ovaria fwell, and difcharge the material, which has been called an ovum, though it does not poffefs a diftinguifhable form ; and that
this is acquired and carried into the uterus by the periftaltic motions of the fallopian tubes, fome hours after copulation. Herc I fuppofe it finds the male femen, and that thus the new animal produced by the fecretion of the male finds correfponding nutrinent and fituation in the female in all fexual progeny. But that no female apparatus is required in the production of the buds of trees, or in the adherent fetus of the polypus, or of the coral-infects.

In objcetion to this theory of generation it may bc faid, if the animalcula in femine, as feen by the microfcope, be all of them rudiments of homunculi, when but one of them can find a nidus, what a wafte nature has made of her productions? I do not affert that thefe moving particles, vifible by the microfcope, arc homunciones; perhaps they may be the creatures of fagnation or putridity, or perhaps no creaturcs at all; but if they arc fuppofed to be rudiments of homunculi, or embryons, fuch a profufion of them correfponds with the general efforts of naturc to provide for the continuance of her feccies of animals. Every individual trec produces innumerable feeds, and cvery individual fifh innumerable fpawn, in fuch inconceivable abundance as would in a thort fpace of time crowd the earth and ocean with inhabitants; and thefe arc much more perfect animals than the animalcula in feminc can be fuppofed to be, and perifh in unYOL. II.

P
counted
counted millions. This argument only fhews, that the productions of nature are governed by gencral laws; and that by a wife fuperfluty of provifion fhe has enfured their continuance.
2. That the embryon is fecreted of produced by the male, and not by the conjunction of fluids from both male and female, appears from the analogy of vegetable feeds. In the large flowers, as the tulip, there is no fimilarity of apparatus between the anthers and the ftigma: the feed is produced according to the obfervations of Spallanzani long before the flowers open, and in confequence long before it can be impregnated, like the egg in the puilct. And after the prolifis duft is thed on the fiigma, the feed becomes coagulated in one point firf, like the cieatrieula of the impregnated egg. See Botanic Garden, Part I. additional note 38. Now in the fe fimple products of nature, if the female contributed to produce the new embryon equally with the male, there would probably have been fome viible fimilarity of parts for this purpofe, befides thofe neceffary for the nidus and fuftenance of the new progeny. Befides in many flowers the males are more numerous than the females, or than the feparate utcrine cells in their germs, which would fhew, that the office of the male was at leaft as important as that of the female; whereas if the male, befides producing the cgg or feed, was to produce an equal part of the cmbryon,
the office of reproduction would be unequally divided between them.

Add to this, that in the moft fimple kind of vegetable reproduction, I mean the buds of trees, which are the viviparous offspring, the leaf is evidently the parent of the bud, which rifes in its bofom, according to the obfervation of Linnæus. This leaf confifis of abforbent veffels, and pulmonary ones, to obtain its nutriment, and to impregnate it with oxygene. This fimple piece of living organization is alfo furnifhed with a power of reproduction; and as the new offspring is thus fupported adhering to its father, it needs no mother to fupply it with a nidus, and nutriment, and oxygenation; and hence no female leaf has exiftence.

I did conceive that the veffels between the bud and the leaf communicated or inofculated; and that the bud was thus ferved with vegetable blood, that is, with both nutriment and oxygenation, till the death of the parent-leaf in autumn. And that in this refpect it differed from the fetus of viviparous animals. But, fince the former editions of this work were publifhed, I have been induced to change that opinion; as on diffecting the bud of the horfe-chefnut, rfculus hippocaftanum, as mentioned below, no communication of veffels between the leaf and the bud generated in its bofom could be perceived, fo that it is more probably nourifhed by abforbing the fluid, with
which it is furrounded, like the fetus of animals, as thewn in my work on vegctation, termed Phytologia. Scet. VII. 1. 2. Sccondly, I conceive that then the bark-veffels belonging to the dead leaf, and in which I fuppofe a kind of manna to have been depofited, become now the placental veffels, if they may be fo called, of the new bud. From the vernal fap thus produced of one fugar-maplc-tree in New-York and in Pennfylvania, five or fix pounds of good fugar may be made annually without deftroying the tree. Account of maple-fugar by B. Rufh. London, Phillips. (Sec Botanic Garden, Part I. additional note ors vegetable placentation.)

Thefe veffels, when the warmth of the vernal fun hatches the young bud, ferve it with a faccharine nutriment, till it acquires leaves of its own, and fhoots a new fyftem of abforbents down the bark and root of the tree, juft as the farinaceous or oily matter in feeds, and the faccharine matter in fruits, ferve their embryons with nutriment, till they, acquire leaves and roots. This analogy is as forceable in fo obfcure a fubject, as it is curious, and may in large buds, as of the horfe-ehernut, be almof feen by the naked cye; if with a penknife the remaining rudiment of the laft year's leaf, and of the new bud in its bofom, be cut away flice by flice. The feven ribs of the laft year's leaf will be feen to have arifen from the pith in feven diftinct points making a curve;
and the new bud to have been produced in their centre, and to have pierced the alburnum and cortex, and grown without the affiftance of a mother. A fimilar procefs may be feen on diffecting a tulip-root in winter; 'the leaves, which enclofed the laft year's flower-ftalk, were not neeeflary for the flower; but each of thefe was the father of a new bud, which may be now found at its bafe ; and which, as it adheres to the parent, required no mother.

This paternal offspring of vegetables, I mean their buds and bulbs, is attended with a very curious circumftance ; and that is, that they exactly refemble their parents, as is obfervable in grafting fiuit-trees, and in propagating flowerroots; whereas the feminal offspring of plants, being fupplied with nutriment by the mother, is liable to perpetual variation. Thus alfo in the vegetable clafs dioecia, where the male flowers are produced on one tree, and the female ones on another; the bads of the male trees uniformly produee either male flowers, or other buds fimilar to themfelves; and the buds of the female trees produce cither female flowers, or other buds fimilar to themfelves; whereas the feeds of thefe trees produce either male or female plants. From this analogy of the production of vegetable buds without a mother, I contend that the mother does not contribute to the formation of the living ens
in animal generation, but is neceffary only for fupplying its nutriment and oxygenation.

There is another vegetable fact publifhed by M. Koelreuter, which he calls " a complete metamorphofis of one natural fpecies of plants into another," which fhews, that in feeds as well as in buds, the embryon proceeds from the male parent, though the form of the fubfequent mature plant is in part dependant on the female. M. Koelreuter impregnated a itigma of the nicotiana ruftica with the farina of the nicotiana paniculata, and obtained prolific feeds from it. With the plants which fprung from thefe feeds, he repeated the experiment, impregnating them with the farina of the nicotiana paniculata. As the mule plants which he thus produced were prolific, he continued to impregnate them for many generations with the farina of the nicotiana paniculata, and they became more and more like the male parent, till he at length obtained fix plants in every refpect perfectly fimilar to the nicotiana paniculata; and in no refpect refembling their female parent the nicotiana ruftica, Blumenbach on Generation.
3. It is probable that the infects, which are faid to require but one impregnation for fix generations, as the aphis (fee Amenit. Academ.) produce their progeny in the manner above de: fcribed, that is, without a mother, and not with-
out a father; and thus experience a lucina fine concubitu. Thofe who have attended to the habis of the polypus, which is found in the ftagnant water of our ditehes in July, affirm, that the young ones branch out from the fide of the parent like the buds of trees, and after a time fcparate themfelves from them. This is fo analogous to the manner in which the buds of trees appear to be produced, that thefe polypi may be confidered as all male animals, produeing embryons, which require no mother to fupply them with a nidus, or with nutriment, and oxygenation.

This lateral or lineal generation of plants, not only obtains in the buds of trees, which continue to adhere to them, but is beautifully feen in the wires of knot-grafs, polygonum aviculare, and in thole of ftrawberries, fragaria vefca. In thefe an clongatcd crecping bud is protruded, and, where it touches the ground, takes root, and produees a new plant derived from its father, from which it acquires both nutriment and oxygenation ; and in confequence nceds no maternal apparatus for thefe purpofes. In viviparous flowers, as thofe of - allium magicum, and polygonum viviparum, the anthers and the fligmas bccome effete and pcrifh; and the lateral or paternal offspring fucceed inftead of feeds, which adhere till they are fufficiently maturc, and then fall upon the ground, and taker root like other bullbs.

The lateral production of plants by wires, while each new plant is thus chained to its parent, and continues to put forth another and another, as the wire ereeps onward on the ground, is exactly 'refembled by the tape-worm, or tænia, fo often found in the bowels, ftretching itfelf in a chain quite from the fomach to the rectum. Limmeus afferts, "s that it grows old at one extremity, while it continnes to generate young ones at the other, proceeding ad infinitum, like a root of grafs. The feparate joints are called gourd-worms, and propagate new joints like the parent without end, each joint being furnifhed with its proper mouth, and organs of digeftion." Syftema naturæ. Vermes tenia. In this animal there evidently appears a power of reproduction without any maternal apparatus for the purpofe of fupplying nutriment and oxygenation to the embryon, as it remains attached to its father till its maturity. The volvox globator, which is a tranfparent animal, is faid by Linnæus to bear within it fons and grand-fons to the fifth generation. Thefe are probably living fetufes, produced by the father, of different degrees of maturity, to be detruded at different periods of time, like the unimpregnated eggs of various fizes, which are found in poultry; and as: they are produced without any known copulation, contribute to evinee, that the living embryon in other orders of animals is formed by the male parent,
and not by the mother, as one parent has the power to produce it.

This idea of the reprodection of animals from a fingle living filament of their fathers, appears to have been fhadowed or allegorized in the curious account in facred writ of the formation of Eve from a rib of Adam.

From all thefe analogies I conclude, that the embryon is produced folely by the male, and that the female fupplies it with a proper nidus, with fuftenance, and with oxygenation; and that the idea of the femen of the male conffituting only a ftimulus to the egg of the female, exeiting it into life, (as held by fome philofophers) has no fupport from experiment or analogy.
III. 1.- Many ingenious philofophers have found fo great difficulty, in conceiving the manner of the reproduction of animals, that they have fuppofed all the numerous progeny to have exifted in miniaturc in the animal originally created ; and that thefe infinitely minute forms are only evolved or diftended, as the embryon increafes in the womb. This idea, befides its being unfupported by any analogy we are acquainted with, afcribes a greater tenuity to organized matter, than we can readily admit; as thefe included embryons are fuppofed each of them to confift of the various and complicate parts of animal bodies: they muft poffefs a much greater degree of minutenefs, than that which was af-
cribed to the devils that tempted St. Anthony; of whom 20,000 were faid to have been able to dance a faraband on the point of the fineft needle without incommoding each other.
2. Others have fippofed, that all the parts of the embryon are formed in the male, previous to its being depofited in the egg or uterus; and that it is then only to have its parts evolved or diftencled as mentioned above; but this is only to get rid of one diffieulty by propofing another equally incomprehenfible: they found it difficult to conceive, how the embryon could be formed in the uterus or egg, and therefore wifhed it to be formed before it came thither. In anfwer to both thefe doetrines it may be obferved, Ift, that fome animals, as the crab-fifh, can reproduce a whole limb, as a leg whieh has been broken off; others, as worms and fnails, can reproduce a Head, or a tail, when either of them has been cut away; and that hence in thefe animals at leaft a part can be formed anew, which cannot be fuppofed to have exifted previouny in miniature.

Sceondly, there are new parts or new veffels produced in many difeafes, as on the comea of the eye in ophthalmy, in wens and eancers, which cannot be fuppofed to have had a prototype or original miniature in the embryon.

Thirdly, how could mule-animals be produced, whieh partake of the forms of both the parents, if the orjginal embryon was a miniature exifing
in the fomen of the male parent? if an embryons of the maie afs was only cxpanded, no refcm. blance io the mare could exift in the mule.

This miftaken idca of the extenfion of parts feems to have had its rife from the mature man refembling the, general form of the fetus; and from thence it was believed, that the parts of the fetis were diftended into the man; whereas they have increafcd 100 times in weight, as well as 100 times in fize; now no one will call the additional ninety-nine parts a diftention of the original one part in rcfpect to weight. Thus the utcrus during pregnancy is greatly enlarged in thicknefs and folidity as wcll as in capacity, and hence muft have acquired this additional fize by accretion of new parts, not by an extenfion of the old ones; the familiar act of blowing up the bladder of an animal recently flaughtcred has lcd our imaginations to apply this idea of diftention to the increafe of fize from natural growth; which however muft be owving to the appofition of new parts; as it is evinced from the increafe of weight along with the increafe of dimenfron; and is even vifible to our eyes in the elongation of our hair from the colour of its ends; or when it has been dyed on the head; and in the growth of our nails from the fpecks fometimes obfervable on them; and in the increafe of the white crefcent at their roots, and in the growth
of new flefh in wounds, which confifts of new nerves as well as of new blood-veffels.
3. Laftly, Mr. Buffon has with great ingenuity imagined the exiftence of eertain organie particles, which arc fuppofed to be partly alive, and partly mechanic fprings. Thie latter of thefe were difcovered by Mr. Needham in the milt or male organ of a fpecies of cuttle fifh, called calmar; the former, or living animalcula, are found in botho malc and femalc fecretions, in the infufions of feeds, as of pepper, in the jelly of roafted veal, and in all other animal and vegetable fubftances. Thefe organie particles he fuppofes to exift in the fpermatie fluids of both fexes, and that they are derived thither from every part of the body, and muft therefore refemble, as he fuppofes, the parts from whenee they arc derived. Thefe organic particles he bclieves to be in conffant activity, till they beeome mixed in the womb, andthen they inftantly join and produce an embryon or fetus fimilar to the two parents.

Many objections might be addueed to this ingenious theory; I fhall only mention two. Firft, that it is analogous to no knowi animal laws. And feeondly, that as thefc fluids, replete with organic particles derived both from the male and fcmale organs, are fuppofed to be fimilar; therc is no reafon why the mother fhould not produce a fomale conbryon without the affifance of the male,
male, and realize the lucina fine concubitu. See No. S and 9 of this fection, and Sect. XXXVII. 3.
IV. 1. I conceive the primordium, or rudiment of the embryon, as fecreted from the blood of the parent, to confift of a fimple living filament as a mulcular fibre; which I fuppofe to be an extremity of a nerve of loco-motion, as a fibre of the retina is an extremity of a nervc of fenfation; as for inftance one of the fibrils, which compofe the mouth of an abforbent veffel ; I fuppofe this living filament, of whatever form it may be, whether fphere, cube, or cylinder, to be endued with the capability of being excited into action by certain kinds of fimulus. By the ftimulus of the furrounding fluid, in which it is received from the mate, it may bend into a ring: and thus form the beginning of a tube. Such moving filaments, and fuch rings, are defcribed by thofe, who have attended to microfcopic animalcula. This living ring may now embrace or abforb a nutritive particle of the fluid, in which it fwims; and by drawing it into its pores; or joining it by compreffion to its extremities, may increafe its own length or craffitude; and by degrecs the living ring may become a living tube.
2. With this new organization, or accretion of parts, new kinds of irritability may commence; for fo long as there was but one living organ, it could only be fuppofed to poffefs irritability; fince fenfibility may be coneeived to be an cx-
terifion of the effect of irritability over the reft of the fyfem. Thefe new kinds of inritability and of fenfibility in confequence of new organization, appear from variety of facts in the more mature animal; thus the formation of the teftes, and confequent fecretion of the femen, oceafion the paffion of luft; the lungs muft be previoufly formed before their exertions to obtain frefh air can exift ; the tiroat or œefophagus muft be formed previous to the fenfation or appetites of hunger and thirft; one of which feems to refide at the upper end, and the other at the lower end of that canal.

Thus alfo the glans penis, when it is diftended with blood, acquires a new fenfibility, and a new appetency. The fame oceurs to the nipples of the breafts of female animals; when they are diftended with blood, they acquire the new appetency of giving milk. So inflamed tendons and membranes, and even bones, aequiro new fenfations; and the parts of mutilated animals, as of wounded finails, and polypi, and erabs, are reproduced; and at the fame time acquire fenfations adapted to their fituations. Thus when the head of a finail is reproduced after decollation with a fharp rafor, thofe curious telefcopic cyes are alfo reproduced, and acquire their fenfibility to light, as well as their adapted mufeles for retraction on the approach of injury.

With every new change, therefore, of organic
form, or addition of organic parts, I fuppofe a new kind of irritability or of fenfibility to be produced ; fuch varieties of irritability or of fenfibility exift in our adult fate in the glands; every one of which is furnifhed with an irritability, of a tafte, or appetency, and a confequent mode of action peculiar to itfelf.

In this manner I conccive the veffels of the jaws to produce the tecth, thofe of the fingers to produce the nails, thofe of the fkin to produce the hair; in the fame manner as afterwards about the age of puberty the beard and other great changes in the form of the body, and difpofition of the mind, arc produced in confequence of the new fecretion of femen; for if the animal is deprived of this fecretion thofe changes do not take place. Thefe changes I conceive to be formed not by clongation or diftention of primeval famina, but by appofition of parts; as the mature erab-fifh, when deprived of a limb, in a certain fpace of time has power to regencrate it ; and the tadpole puts forth its feet long after its exclufion from the fpawn; and the caterpillar in changing into a butterfly acquires a new form, with new powers, new fenfations, and new defires.

The natural hifiory of butterflics, and moths, and bectlcs, and gnats, is full of curiofity; fome of them pafs many months, and others even years, in their caterpillar or grub fate; they
then reft many weeks without food, fufpended in the air, buried in the earth, or fubmerfed in water: and change themfelves during this time into an animal apparently of a different nature; the ftomachs of fome of them, which before digefted regetable leaves or roots, now only digeft honey; they have acquired wings for the purpofe of feeking this new food, and a long probofcis to collect it from flowers, and I fuppofe a fenfe of incll to detect the fecret places in flowers, where it is formed. The moths, which fly by night, flave a much longer probofeis rolled up under their chins like a watch fpring; which they exind to colleet the honey from flowers in their fleeping fate; when they are clofed, and the nectaries in confequence more difficult to be plundered. The beetle kind are furnifhed with an cxtcrnal covering of a hard material to their wings, that they may occafionally again make holes in the earth, in which they pafled the former fate of their exiftence.

But what moft of all diftinguifhes thefe new animals is, that they are now furnifhed with the powers of reproduction ; and that they now diffor from each other in fex, which docs not appear in their caterpillar or grub ftate. In fome of them the change from a caterpillar into a butterfly or moth feems to be accomplifhed for the folc purpofe of their propagation ; fince they immediately die after this is finifhed, and take no
food in the interim, as the filk-worm in this climate ; though it is poffible it might take honey as food, if it was prefented to it. For in general it would feem, that food of a more ftimulating kind, the honey of regetables infread of their leaves, was neceflary for the purpofe of the feminal reproduction of thefe animals, exactly fimilar to what happens in vegetables; in thefe the juices of the earth are fufficient for their purpofe of reproduction by buds or bulbs; in which the new plant feems to be formed by irritative motions, like the growth of their other parts, as their leaves or roots; but for the purpofe of feminal or amatorial reproduction, where fenfation is required, a more fimulating food becomes neceffary for the anther and ftigma; and this food is honcy; as explained in Sect. XIII. on Vegetable Animation.

The gnat and the tadpole refemble each other in their change from natant animals with gills into aerial animals with lungs; and in their change of the elcment in which they live; and probably of the food, with which they are fupportcd; and laftly, with their acquiring in their new fate thic difference of fex, and the organs of feminal or amatorial reproduction. While the poJypus, who is their companion in their former fiate of life, not being allowed to change his form and element, can only propagate like vegetr able buds by the fame lind of irritative motions, VOL. I1.

Q
which
which produces the growth of his own body, without the feminal or amatorial propagation, which requires fenfation; and which in gnats and tadpoles feems to require a change both of food and of refpiration.

From, hence I conclude, that with the acquifition of new parts, new fenfations, and new dofires, as well as new powers, are produced; and this by accretion to the old ones, and not by diftention of them. And finally, that the moft erfential parts of the fyftem, as the brain for the purpofe of diftributing the power of life, and the placenta for the purpofe of oxggenating the blood, and the additional abforbent veffels for the purpofe of acquiring aliment, are finf formed by the irritations above mentioncd, and by the pleafurable fenfations attending thofe irritations, and by the excrtions in confequence of painful fenfations, fimilar to thofe of hunger and fuffocation. After thefe an apparatus of limbs for future ufes, or for the purpofe of moving the body in its prefent natant fate, and of lungs for future refpiration, and of teftes for fiture reproduction, are formed by the irritations and fenfations, and confequent exertions of the parts previounly exifting, and to which the new parts are to be attached.
3. In confirmation of thefe idcas it may be obferved, that all the parts of the body endeavour to grow, or to make additional parts to themfelves throughout
throughout our lives; but are reftrained by the parts immediately containing them; thus, if the thin be taken away, the flefhy parts beneath foon fhoot out new granulations, called by the vulgar proud fefh. If the perioftcum be removed, a fimilar growth commences from the bone. Now in the cafe of the imperfect embryon, the containing or confining parts are not yet fuppofed to be formed, and hence there is nothing to reftrain its growth.
4. By the parts of the embryon bcing thus produced by new appofitions, many phenomena both of animal and vegetable productions receive an cafier explanation; fuch as that many fetufes are deficient at the cxtremitics, as in a finger or a toe, or in the end of the tongue, or in what is called a hare-lip with deficiency of the palate. For if there fhould be a deficiency in the quantity of the firft nutritive particles laid up in the egg for the reccption of the firft living filament, the extreme parts, as being laft formed, inuft thew this deficiency by their being imperfect.

This idea of the growth of the embryon accords alfo with the production of fome monftrous births, which confift of a duplicature of the limbs, as chickens with four legs; which could not occur, if the fetus was formed by the diftention of an original flamen, or miniature. For if there fhould be a fuperfluity of the firft nutritive particles laid up in the egg for the firft living
filament; it is cafy to conceive, that a duplicature of forme parts may be formed. And that fuch fuperfluous nourithment fometimes exifts, is evineed by the double yolks in fome eggs, whieh I fuppofe were thus formed previous to their im.pregnation by the exuberant nutriment of the hen.

This idea is confirmed by the analogy of the monflers in the vegetable world alfo; in whieh a duplieate or triplieate production of various parts of the flower is obfervable, as a triple nectary in fome columbines, and a triple petal in fome primrofes; and whieh are fuppofed to be produced by abundant nourifhment.
5. If the embryon be received into a fluid, the ftimutus of which is different in fome degree from the natural, as in the production of mule-animals, the new irritabilities or fenfibilities aequired by the increafing or growing organized parts may differ, and thence produce parts not fimilar to the father, but of a kind belongring in part to the mother: and thus, though the original ftamen or living ens was derived totally from the father, yet new irritabilities or fenfibilities being exeited, a ehange of form correfponding with them will be produced. Nor could the production of mules exift, if the famen or miniature of all the parts of the embryon is previoufly fomed in the male femen, and is only diftended by nourifhment in the female uterus. Whereas this dificulty ceafes, if the embryon be fippofed to con-
fift of a living filament, which acquires or makes new parts with new irritabilities, as it advances its growth.

The form, folidity, and colour, of the particles of nutriment laid up for the reception of the firft living filament, as well as their peeuliar kind of ftimulus, may contribute to produce a difference in the form, folidity, and colour of the fetus, fo as to refemble the mother, as it advances in life. This alfo may efpecially happen during the firft ftate of the exiftence of the embryon, before it has acquired organs, which can change thefe firft nutritive particles, as explained in No. 5. 2. of this Section. And as thefe nutritive particles are fuppofed to be fimilar to thofe, which are formed for her own nutrition, it follows that the fetus fhould fo far refemble the mother.

This explains, why hereditary difeafes may be derived either from the malc or female parent, as well as the peculiar form of cither of their bodies. Some of thele hereditary difeafes are fimply owing to a deficient activity of a part of the fyftem, as of the abforbent veffels, which open into the cells or cavities of the body, and thus occafion dropfics. Others are at the fame time owing to an increafe of fenfation, as in ferofula and confumption ; in thefe the obftruction of the fluids is firft caufed by the inirritability of the veffels, and the inflammation and uleers which fucceed,

Q 3
are caufed by the confequent inereafe of fenfation in the obftructed part. Other hereditary difeales, as the epilepfy, and other convulfions, confift in too great voluntary exertions in confequence of difagreeable fenfation in fome particular difeafed part. Now as the pains, which occafion thefe convulfions, are owing to defect of the action of the difcafed part, as fhewn in Scet. XXXIV. it is plain, that all thefe hereditary difeafes may have their origin either from defective irritability derived from the father, or from deficiency of the ftimulus of the nutriment derived from the mother. In either cafe the cffect would be fimilar; as a fcrofulous race is frequently produced among the poor from the deficient fimulus of bad diet, of of hunger; and among the rich, by a deficient irritability from their having been long accuftomed to too great ftimulus, as of vinous fpirit.
6. From this account of reproduction it appears, that all animals have a fimilar origin, viz. from a fingle living filament; and that the differcnce of their forms and qualitics has arifen only from the different initabilities and fenfibilities, or voluntarities, or affociabilities, of this original living filament; and perhaps in fome degree from the different forms of the particles of the fluids, by which it has been at firff ftimulated into aftivity. And that from hence, as Linnæus has conjectured in refpect to the vegetable world,
it is not impoffible, but the great variety of fpecies of animals, which now tenant the earth, may have had their origin from the mixture of a few natural orders. And that thofe animal and vegetable mules, which could continue their fpecies, have done fo, and conftitute the numerous families of animals and vegetables which now exift; and that thofe mules, which were produced with imperfect organs of generation, perifhed without reproduction, according to the obfervation of Ariftotle; and are the animals, which we now call mules. See Botanic Garden, Part II. Note on Dianthus.

Such a promifcuous intercourfe of animals is faid to exift at this day in New South Wales by Captain Hunter. And that not only amongft the quadrupeds and birds of different kinds, but even amongft the fifh; and, as he believes, among ft the vegetables. He fpeaks of an animal between the opoffum and the kangaroo, from the fize of a theep to that of a rat. Many fifh feemed to partake of the fhark ; fome with a fkait's hearl and fhoulders, and the hind part of a fhark; others with a fhark's head and the body of a mullet; and fome with a fhark's head and the flat body of a fting-ray. Many birds partake of the parrot; fome have the head, neck, and bill of a parrot, with long ftraight feet and legs; others with legs and feet of a parrot, with head and neck of
a fea-gull. Voyage to South Walcs by Captain John Irunter, p. 68.
7. All animals therefore, I contend, have a fimilar caufc of their organization, originating from a fingle living filament, cndued inclecd with different kinds of irritabilities and fenfibilities, or of animal appotencics; which exift in every gland, and in every moving organ of the body, and are as effential to living organization as chemical affinitics are to certain combinations of inanimate matter.

If I might be indulged to make a fimile in a philofophical work, I fhould fay, that the animal appetencies, are not only perhaps lefs numerous originally than the chemical affinities; but that like thefe latter, they change with cvery new combination; thus vital air and azote, when combined, produce nitrous acid; which now acquires the property of diffolving filver; fo with crery neiv additional part to the cmbryon, as of the throat or lungs, I fuppofe a new animal appetency to be produced.

In this early formation of the cmbryon from the irritabilitics, fenfibilities, and affociabilitics, and confequent appetencics; the faculty of voliion can fearcely be fuppofed to have had its birth. For ahout what can the fetus deliberate when it has no choice of objects? But in the more advanced flate of the fetus, it evidently poifeffes volition; as it frequently changes its alli-
tude, though it fecms to flecp the greateft part of its time; and afterwards the power of volition contributes to change or alter many parts of the body during its growth to manhood, by our early modes of exertion in the various departments of life. All thefe faculties then conflitute the vis fabricatrix, and the v is confervatrix, as well as the vis medicatrix of nature, fo much fpoken of, but fo little underfood by philofophers.
8. When we revolve in our minds, firft, the great changes, which we fee naturally produced in animals after their nativity, as in the production of the butterfly with painted wings froin the crawling caterpillar; or of the refpiring frog from the fubnatant tadpole; from the feminine boy to the bearded man, and from the infant girl to the lactefcent woman; both which changes may be prevented by certain mutilations of the glands neceffary to reproduction.

Secondly, when we think over the great changes introduced into various animals by artificial or accidental cultivation, as in horfes, which we have exercifed for the different purpofes of ftrength or fwiftnefs, in carrying burthens or in running races; or in dogs, which have been cultivated for ftrength and courage, as the bull-dog; or for acutenefs of his fenfe of fmell, as the hound and fpanicl; or for the fiviftnef's of his foot, as the greyhound; or for his fivimming in the water, or for drawing frow-fledges, as the rough-haired dogs of the north; or laftly, as a play-dog for children, as the lap-dog; with the changes of the forms of the cattle, which have been domefticated from the greateft antiquity, as camels, and heep; which have mondergone fo total a transformation, that we are now ignorant from what fpecies of wild animals they had their origin. Add to thefe the great changes of thape and colour, which we daily fee produced in fmaller animals from our domeftication of them, as rabbits, or pigeons; or from the difference of climates and even of feafons; thus the fheep of warm climates are covered with hair inftead of wool; and the hares and partridges of the latitudes, which are long buried in fnow, become white during the winter months; add to thefe the various changes produced in the forms of mankind, by their carly modes of exertion; or by the difeafes occafioned by their habits of life ; both of which became hereditary, and that through many generations. Thofe who labour at the anvil, the oar, or the loom, as well as thofe who carry fedan-chairs, or who have been educated to dance upon the rope, are diftinguilhable by the thape of their limbs; and the difeafes occafioned by intoxication deform the countenance with leprous eruptions, or the body with tumid vifcera, or the joints with knots and diftortions.
'Thirdly, when we enumerate the great changes produced in the fpecies of animals before their
nativity; thefe are fuch as refemble the form or colour of their parents, which have been altered by the cultivation or accidents above related, and are thus continued to their pofterity. Or they are changes produced by the mixture of fpecies as in mules ; or changes produced probably by the exuberance of nourifhment fupplied to the fetus, as in monftrous births with additional limbs; many of thefc enormities of fhape are propagated, and continued as a variety at leaft, if not as a new fpecies of animal. I have feen a breed of cats with an additional claw on every foot; of poultry alfo with an additional claw, and with wings to their fect; and of others without rumps. Mr. Buffon mentions a breed of dogs without tails, which are common at Rome and at Naples, which he fuppofes to have been produced by a cuftom long eftablifhed of cutting their tails clofe off. There are many kinds of pigeons, admired for their pcculiarities, which are monfters thus produced and propagated. And to thefe muft be added, the changes produced by the imagination of the male parent, as will be treated of more at large in No. VI. of this Scction.

When we confider all thefc changes of animal form, and innumerable others, which may be collected from the books of natural hiftory; we camot but be convinced, that the fetus or embryon is formed by appofition of new parts, and not by the diftention of a primordial neft of
germes, included one within another, like the cups of a conjurer.

Fourthly, when we revolve in our minds the great fimilarity of ftructure which obtains in all the warm blooded animals, as well quadrupeds, biids, and amphibious animals, as in mankind; from the moure and bat to the elephant and whale; one is led to conclude, that they have alike beeni produced from a fimilar living filament. - In fome this filament in its advance to maturity has aequitred hand's and fingers, with a fine fenfe of touch, as in mankind. In others it has acquired clavs or talons, as in tygers and eaglès. 'In others, toes with an intervening web, or membrane, as in feals and geefe. In others it has aequired eloven hoofs, as in cows and fivine; and whole hoofs in others, as in the horfe. While in the bird kind this original living filament has put forth wings inftead of apms or legs; and feathers inftead of hatr. In fome it has protruded horns on the forehead infead of teeth in? the fore part of the upper jaw ; in others tufhes inftead of horns; and in others beaks infiead of either. And all this exactly as is daily feen in the tranfmutations of the tadpole, which acquires legs and lungs, when he wants them; and loles his tail, when it is no longer of fervice to him.

Fifthly, from their firft rudiment, or primor--dium, to the termination of their lives, all animals undergo perpetual transformations; whieh
are in part produced by their own exertions in confequence of their defires and averfions, of their pleafures and their pains, or of irritations, or of aflociations; and many of thefc acquired forms. or propenfities are tranfmitted to their pofterity. See Sect. XXXI. 1.

As air and water are fupplied to animals in fufficient profufion, the three great objects of defire, which have changed the forms of many animals by their exertions to gratify them, are thofe of luft, hunger, and feeurity. A great want of one part of the animal world has confifted in the defire of the exclufive poffeffion of the females; and thefe have acquired weapons to combat each other for this purpofe, as the very thick, fhieldlike, horny flkin on the fhoulder of the boar is a defence only againft animals of his own fpecies, who ftrike obliquely upwards, nor are his turhes for other purpoles, except to defend himfelf, as he is not naturally a carnivorous animal. So the horns of the flag are fharp to offend his adverfary, but are branched for the purpofe of parrying or receiving the thrufts of horns fimilar to his own, and have therefore been formed for the purpofe of combating other ftags for the exclufive poffeffion of the females; who are obferved, like the ladies in the times of chivalry, to attend the car of the vichor.
The birds, which do not carry food to their young, and do not therefore marry, are armed
with fpurs for the purpofe of fighting for the exclufive poffeffion of the females, as cocks and quails. It is certain that thefe weapons are not provided for their defence againft other adverfaries, becaufe the females of thele fpecies are without this armour. The final caufe of this conteft amongft the males feems to be, that the ftrongeft and moft active animal thould propagate the rpecies, which fhould thence become improved.

Another great want confifts in the means of proeuring food, which has diverfified the forms of all fpecies of animals. Thus the nofe of the fwine has become hard for the purpofe of turning up the foil in fearch of infects and of roots. The trunk of the elephant is an clongation of the nofe for the purpofe of pulling down the branches of trees for his food, and for taking up water without bending his knees. Beafts of prey have acquired ftrong jaws or talons. Cattle have acquired a rough tongue and a rough palate to pull off the blades of grafs, as cows and fheep. Some birds have acquired hardei beaks to crack nuts, as the parrot. Others have acquired beaks adapted to break the harder feeds, as fparrows. Others for the fofter feeds of flowers, or the buds of trees, as the finches. Other birds have acquired long beaks to penetrate the moifter foils in fearch of infects or roots, as woodcocks; and others broad ones to filtrate the water of lakes, and to retain

Sect. XXXIX. 4.8. GENERATION.
aquatic infects, as ducks. All which feem to have been gradually produced during many generations by the perpetual endeavour of the creatures to fupply the want of food, and to have been delivered to their pofterity with conftant improvement of them for the purpofes required.

The third great want amongft animals is that of fecurity, which feems much to have diverffied the forms of their bodies and the colour of them; thefe confift in the means of efcaping other animals more powerful than themfelves. Hence fome animals have acquired wings inftead of legs, as the fmaller birds, for the purpofe of efcape. Others great length of fin, or of membrane, as the flying fifh, and the bat. Others great fiviftnefs of foot, as the hare. Others have acquired hard or armed thells, as the tortoife and the echinus marinus.

Mr. Ofbeck, a pupil of Linnæus, mentions the American frog-fifh, lophius hiftrio, which inhabits the large floating iflands of fea-weed about the Cape of Good Hope, and has fulcra refembling leaves, that the fifhes of prey may miftake it for the fea-weed, which it inhabits. Voyage to China, p. 113.

The contrivances for the purpofes of fecurity extend even to vegetables, as is feen in the wonderful and various means of their concealing or defending their honey from infects, and their feeds from birds. On the other hand fwifinefs
of wing has been aequired by hawks and fwallows to purfue their prey; and a probofcis of admirable ftructure has been aequired by the bee, the moth, and the humming bird, for the purpofe of plundering the nectaries of flowers. All which feem to have been formed by the original living flament, excited into action by the neeeffities of the creatures, which poffefs them, and on whieh their exiftence depends.

From thas meditating on the great fimilarity of the ftructure of the warm-blooded animals, and at the fame time of the great ehanges they undergo both before and after their nativity; and by confidering in how minute a portion of time many of the changes of animals above deferibed have been produced; would it be too bold to imagine, that in the great lengtl of time, fince the earth began to exift, perhaps millions of ages before the commencement of the hiftory of mankind, would it be too bold to imagine, that all warm-blooded animals have arifen from one living filament, which the great Pirst Cause enducd with animality, with the power of acquiring new parts, attended with new propenfitics, directed by irritations, fenfations, volitions, and affociations: and thus poffeffing the faculty of continuing to improve by its own inherent activity, and of delivering down thofe improvements by generation to its pofferity, world witlrput end?

Sixthly,

Sixthly, The cold-blooded animals, as the fifhtribes, which are furnifhed with but one ventricle of the heart, and with gills inftead of lungs, and with fins inftead of feet or wings, bear a great fimilarity to cach other ; but they differ, neverthelefs, fo much in their general frructure from the warm-blooded animals, that it may not feem probable at firft view, that the fame living filament could have given origin to this kingdom of animals, as to the former. Yet are there fome creatures, which unite or partake of both thefe orders of animation, as the whales and feals; and more particularly the frog, who changes from an aquatic animal furnifhed with gills to an acrial one furnifhed with lungs.

The numerous tribes of infects without wings, from the fider to the forpion, from the flea to the lobfter; or with wings, from the gnat and the ant to the wafp and the dragon-fly, differ fo totally from each other, and from the red-blooded claffes above defcribed, both in the forms of their bodies, and their modes of life; befides the organ of fenfe, which they feem to poffefs in their antenne or horns, to which it has been thought by fome naturalifis, that other creatures have nothing fimilar; that it can fcarcely be fuppofed that this nation of animals could have been produced by the fame kind of living filament, as the redblooded claffes above mentioned. And yet the changes which many of them undergo in their vol. in,

I
early fate to that of their maturity, are as different, as one animal can be from another. As thofe of the gnat, which paffes his early ftate in water, and then ftretching out his new wings, and expanding his new lungs, rifes in the air; as of the caterpillar, and bee-nymph, whieh feed on vegetable leaves or farina, and at length burfting from their felf-formed graves, become beautiful winged inhabitants of the fkies, journeying from flower to flower, and nourifhed by the ambrofial food of honey.

There is ftill another clafs of animals, which are termed vermes by Linnæus, whieh are without feet, or brain, and are hermaphrodites, as worms, lecehes, fnails, fhell-fifh, coralline infects, and fponges; which poffers the fimpleft ftructure of all animals, and appear totally different from thofe already deferibed. The fimplicity of their ftructure, however, can afford no argument againft their having been produced from a living filament as above contended.

Laft of all the various tribes of vegetables are to be enumerated amongft the inferior orders of animals. Of thefe the anthers and ftigmas have already been fhewn to poffers fome organs of fenfe, to be nourifhed by honey, and to have the power of generation like infects, and have thence been announced amongft the animal kingdom in Sect. XIII. and to thefe muft be added the buds and bulbs which conftitute the viviparous offfpring
fpring of vegetation. The former I fuppofe to be beholden to a fingle living filament for their feminal or amatorial procreation ; and the latter to the fame caufe for their lateral or branching generation, which they poffefs in common with the polypus, trnia, and volvox ; and the fimplicity of which is an argument in favour of the fimilarity of its caufe.
Linnæus fuppofes, in the Introduction to his Natural Orders, that very few vegetables were at firft created, and that their numbers were increafed by their intermarriages, and adds, fuadent hæc Creatoris leges a fimplicibus ad compofita: Many other changes feem to have arifen in them by their perpetual conteft for light and air above ground, and for food or moifture beneath the foil. As noted en Botanic Garden, Part II. Note on Cufcuta. Other changes of vegetables from climate, or other caufes, are remarked in the Note on Curcuma in the fame work. From thefe one might be led to imagine, that each plant at firft confifted of a fingle bulb or flower to each roct, as the gentianella and daify ; and that in the contcff for air and light now buds grew on the old decaying flower ftem, fhooting down their elongated roots to the ground, and that in procefs of ages tall trees were thus formed, and an individual bulb became a fwarm of vegetables. Other plants, which in this conteft for light and air were too nender to rife by their own firength, learned by degrees to adhere to their neighbours, either by putting forth roots like the ivy, or by tendrils like the vine, or by firal contortions like the honeyfuckle; or by growing upon them like the mifleto, and taking nourifhment from their barks; or by only lodging or adhering on them, and deriving nourifhment from the air, as tillandfia.

Shall we then fay that the vegetable living filament was originally different from that of each tribe of animals above defcribed? And that the productive living filament of cach of thofe tribes was different originally from the other? Or, as the earth and ocean were probably peopled with vcgetable productions long before the exiftcnce of animals; and many families' of thefc 'animals long beforc other families of them, fhall we conjccture that one and the famc kind of living filaments is and has been the caure of all organic life ?

If this gradual production of the fpecics and gencra of animals be affented to, a contrary circumftance may be fuppofed to have occurred, namelf, that fome kinds by the great changes of the elements may have been deftroyed. This idea is thewn to our fenfes by comtemplating the petrifactions of fhells, and of vegetables, which may be faid, like bufts and medals, to record the hiftory of remote times. Of the myriads of belemnites, cormua ammonis, and numerous
other petrified fhells, which are found in the mafes of limeftone', which have been produced by them, none now are ever found in our feas, or in the feas of other parts of the world, according to the obfervations of many naturalifts. Some of whom have imagined, that moft of the inhabitants of the fea and earth of very remote times are now extinet; as they fcarcely admit, that a fingle foffil thell bears a frict fimilitude to any recent' ones, and that the vegetable impresfions or petrifactions found in iron-ores, clay, or fandfione, of which there are many of the fern kind, are not fimilar to any plants of this country, nor accurately correfpond with thofe of other climates, which is an argument countenancing the changes in the forms, both of animals and vegetables, during the progreffive ftructure of the globe, which we inhabit. See Townfon's Philof. of Mineralogy, p. 110.

This idea of the gradual formation and improvement of the animal world accords with the obfervations of fome modern philofophers, who have fuppofed that the continent of America has been raifed out of the ocean at allater period of time than the other three quarters of the globe, which they deduce from the greater comparative heights of its mountains, and the confequent greater coldnees of its refpective climates, and from the lefs fize and frength of its animals, as the tygers and allegators compared with thofe of

Afia or Africa. And laftly, from the lefs progrefs in the improvements of the mind of its inhabitants in refpect to voluntary excrtions.

This idea of the gradual formation and improvement of the animal world feems not to have been unknown to the ancient philofophers. Plato having probably obfcrved the reeiprocal gencration of inferior animals, as fnails and worms, was of opinion, that mankind with all other animals were originally hermaphrodites during the infaney of the world, and were in proeefs of time fcparated into male and female. The breafts and teats of all male quadrupeds, to which no ufe can be now affigned, adds perhaps fome fhadow of probability to this opinion. Linnæus excepts the horfe from the male quadrupeds, who have teats; which might have fhewn the earlier origin of his cxiftence; but Mr. J. Hunter afferts, that he has difcovered the veftiges of them on his fheath, and has at the fame time enriched natural hiftory with a very curious fact concerning the male pigcon; at the time of hatehing the eggs both the male and female pigeon undergo a great change in their crops; whieh thieken and become eorrugated, and fecrete a kind of milky fluid, which eoagulates, and with whieh alone they for a few days feed their young, and afterwards feed them with this coagulated fluid mixed with other food. How this refembles the breafts of female quadrupeds after the production of theis male fhould at this time give milk as well as the female! See Botanic Garden, Part II. Note on Curcuma.

The late Mr. David Hume, in his pofthumous works, plaees the powers of generation much above thofe of our boafted reafon; and adds, that reafon can only make a machine, as a clock or a fhip, but the power of generation makes the maker of the machine; and probably from having obferved, that the greateft part of the earth has been formed out of organic recrements; as the immenfe beds of limeftone, ehalk, marble, from the fhells of fifh; and the extenfive provinces of clay, fandfone, ironftone, coals, from decompored vegetables; all whieh have been firft produced by generation, or by the fecretions of organic life; he concludes that the world itfelf might have been generated, ratther than created; that is, it might have been gradually produced from very fimall beginnings, inereafing by the activity of its inherent principles, rather than by a fudden evolution of the whole by the Almighty fiat.- What a magnificent idea of the infinite power of the the Great Architect! The. Cause of Causes! Parent of Parents! Ens Entium!

For if we may eompare infinities, it would feem to require a greater infinity of power to eaufe the caufes of effects, than to eaufe the effects themfelves. This idea is analogous to the improving tion; fueh as in the progreffive inereafe of the folid or habitable parts of the earth from water; and in the progreffive increafe of the wifdom and happinefs of its inbabitants; and is confonant to the idea of our prefent fituation being a frate of probation, which by our exertions we may improve, and are confequently refponfible for our actions.
V. 1. The efficient eaufe of the various colours of the eggs of birds, and of the hair and feathers of animals, is a fubject fo curious, that I thall beg to introduee it in this place. The colours of many animals feem adapted to their purpofes of concealing themfelves either to avoid danger, or to fpring upon their prey. Thus the fnake and wild eat, and leopard, are fo coloured as to refemble dark leaves and their lighter interfices; birds refemble the colour of the brown ground, or the green hedges, which they frequent; and moths and butterflies are coloured like the flowers which they rob of their honey. Many inftances are mentioned of this kind in Botanic Garden, Part II. Note on Rubia.

Thefe colours have, however, in fome inftances another ufe, as the black'diverging area from the cyes of the fiwan; which, as his cyes are placed lefs prominent than thofe of other birds, for the convenience of putting down his head under water, prevents the rays of light from being reflected into his cye, and thus dazzling his fight,
both in air and beneath the water; which muft have happened, if that furface had been white like the reft of his feathers.

There is a fill more wonderful thing concerning thefe colours adapted to the purpofe of concealment; which is, that the eggs of birds are fo coloured as to refemble the colour of the adjacent objects and their interfices. The eggs of hedgebirds are greenifh with dark fpots; thofe of crows and magpics, which are feen from beneath through wicker nelts, are white with dark fpots; and thofe of larks and partridges are ruffet or brown, like their nefts or fituations.

A thing ftill more aftonifhing is, that many animals in countries covered with fnow become white in winter, and are faid to change their colour again in the warmer months, as bears, hares, and partridges. Our domefficated animals lofe their natural colours, and break into great variety, as horfes, dogs, pigeons. The final caufe of thefe colours is eafily underfood, as they ferve fome purpofes of the animal, but the efficient caufe would feem almoft beyond conjecture.
Firft, the choroid coat of the eye, on which the femitranfparent retina is expanded, is of different colour in different animals; in thofe which feed on grass it is green; from hence there would appear fome connexion between the colour of the choroid coat and of that conftantly painted on the retina by the green grafs. Now, when
the ground beeomes eovered with fnow, it would fecm, that that action of the retina, which is called whitenefs, being conftantly excitcd in the eye, may be gradually imitated by the extremities of the nerves of touch, or rcte mucofum of the fkin. And if it be fuppofed, that the action of the retina in producing the perception of any colour confifts in fo difpofing its own fibres or furface, as to reflcet thofe colourcd rays only, and tranfmit the others like foap-bubbles; then that part of the retina, which gives us the perception of fnow, muft at that time be white; and that which gives us the perception of grafs, muft be green.

Then if by the laws of imitation, as explained in Section XII. 33. and XXXIX. 6. the extremities of the nerves of touch in the rete mueofum be induced into fimilar action, the fkin or feathers, or hair, may in like manner fo difpofe their extreme fibres, as to reflect white; for it is evident, that all thefe parts were originally obedient to irritative motions during their growth, and probably continue to be fo; that thofe irritative motions arc not liable in a healthy fatc to be fucceeded by fenfation; which however is no uncommon thing in their difeafed ftate, or in their infant fate, as in plica polonica, and in very young pen-feathers, which are ftill full of blood.

It was fhewn in Section XV. on the Production
of Ideas, that the moving organ of fenfe in fome circumftances refembled the object which produced that motion. Hence it may be conceived, that the rete mucofum, which is the extremity of the nerves of touch, may by imitating the motions of the retina become coloured. And thus, like the fable of the chameleon, all animals may poffefs a tendency to be coloured fomewhat like the colours they moft frequently infpect, and finally, that colours may be thus given to the eggfhell by the imagination of the female parent; which fhell is previoufly a mucous membrane, indued with irritability, without which it could not circulate its fluids, and increafe in its bulk. Nor is this more wonderful than that a fingle idea of imagination fhould in an inftant colour the whole furface of the body of a bright fcarlet, as in the blufh of fhame, though by a very different procefs. In this intricate fubject nothing but loofe analogical conjedures can be had, which may however liead to future difcoveries; but certain it is that both the change of the colour of animals to white in the winters of fnowy countries, and the fpots on birds eggs, muft have fome efficient caufe; fince the uniformity of their production thews it cannot arife from a fortuitous concurrence of circumftances; and how is this efficient caufe to be detected, or explained, but from its analogy to ather animal facts?
2. The nutriment fupplied by the female parent in viviparous animals to their young progeny may be divided into three kinds, correfponding with the age of the new creature. 1. The nutriment contained in the ovum as previoufly prepared for the embryon in the ovary. 2. The liquor amnii prepared for the fetus in the uterus, and in which it fwims; and laftly, the milk prepared in the pectoral glands for the new-born child. There is reafon to conclude that variety of changes may be produced in the new animal from all thefe fources of nutriment, but particularly from the firft of them.

The organs of digeftion and of fanguification in adults, and afterlwards thofe of fecretion, prepare or feparate the particles proper for nourifhment from other combinations of matter, or recombine them into new kinds of matter, proper to excite into action the filaments, which abforb or attract them by animal appetency. In this procefs we muft atterd not only to the action of the living filament which receives a nutritive particle to its bofom, but alfo to the kind of particle, in refpect to form, or fize, or colour, or hardnefs, which is thus previoufly prepared for it by digeffion, fanguification, and fecretion. Now as the firft filament of entity cannot be furnifhed with the preparative organs above mentioned, the nutritive particles, which are at firft to be received by it, are prepared by the mother ; and depofited
in the ovum ready for its reception. Thefe nutritive particles muft be fuppofed to differ in fome refpects, when thus prepared by different animals. They may differ in fize, folidify, colour, and form ; and yett may be fufficiently congenial to the living filament, to which they are applied; as to excite its activity by their ftimulus, and its animal appetency to receive them, and to combine them with itfelf into organization.

By this firft nutriment thus prepared for the embryon is not meant the liquor amnii, which is produced afierwards, nor the larger exterior parts of the white of the egg ; but the fluid prepared, I fuppofe, in the ovary of viviparous animals, and that which immediately furrounds the cicatricula of an impregnated egg, and is vifible to the eye in a boiled one.

Now thefe ultimate particles of animal matter: prepared by the glands of the mother may be fuppofed to refemble the fimilar ultimate particles, which were prepared for her own nourifhment; that is, to the ultimate particles of which her own organization confifts. And that hence when thefe become combined with a new cmbryon, which in its early ftate is not furnifhed with ftomach, or glands, to alter them; that new embryon will bear fome refemblance to the mother.

This feems to be the origin of the compound forms of mules, which evidently partake of both parents, have indulged their fancies, whence the fphinxes, griffins, dragons, centaurs, and minotaurs, which are vanifhed flom modern credulity.

It would feem, that in thefc unnatural conjunctions, when the nutriment depofited by the female was fo ill adapted to ftimulate the living filament derived from the male into action, and to be reccived, or embraced by it, and combined with it into organization, as not to produce the organs neceffary to life, as the brain, or heart, or ftomach, that no mule was produced. Where all the parts neceffary to life in thefe compound animals were formed fufficiently perfect, except the parts of generation, thofe animals were produced which are now called mules.

The formation of the organs of fcxual generation, in contradiftinction to that by lateral buds, in vegetables, and in fome animals, as the polypus, the tænia, and the volvox, feems the chef d'œuvre, the mafter-piece of nature; as appears from many flying infects, as in moths and butterfies, who feem tó undergo a general change of their forms folely for the purpofe of fexual reproduction, and in all other animals this organ is not complete till the maturity of the creature. Whence it happens that, in the copulation of animals of different fpecies, the parts neeeffary to life are frequently completely formed; but thofe for
for the purpofe of generation are defective, as requiring a nicer organization ; or more exact coincidence of the particles of nutriment to the irritabilities or appetencies of the original living filament. Whereas thofe mules, where all the parts could be perfectly formed; may have been produced in early periods of time, and may have added to the numbers of our various f pecies of animals, as before obferved.

As this production of mules is a conftant effect from the conjunction of different fpecies of animals, thofe between the horfe and the female afs always refembling the horfe more than the afs; and thofe, on the contrary, between the male afs and the mare, always refembling the afs more than the mare ; it cannot be afcribed to the imagination of the male animal which cannot be fuppofed to operate fo uniformly; but to the form of the firft nutritive particles, and to their peculiar ftimulus exciting the living filament to felect and combine them with itfelf. There is a fimilar uniformity of effect in refpect to the colour of the progeny produced between a white man, and a black woman, which, if I am well informed, is always of the mulatto kind, or a mixture of the two; which may perhaps be imputed to the peculiar form of the particles of nutriment fupplied to the embryon by the mother at the early period of its exiftence, and their peculiar ftimulus; as this effect, like that of the mule progeny above treated of, is uniform and confiftent, and cannot therefore be afcribed to the imagination of either of the parents.

Dr. Thunberg obferves, in his Journey to the Cape of Good Hope, that therc are fome families, which have defcended from blacks in the female line for three gencrations. The firft generation proceeding from an European, who married a tawny flave, remains tawny, but approaches to a white complexion; but the children of the third generation, mixed with Europeans, become quite white, and are often remarkably beautiful. Vol. j. p. 112.

When the embryon has produced a placenta, and furnifhed itfelf with veffels for felection of nutritious particles, and for oxygenation of them, no great change in its form or colour is likely to be produced by the particles of fuftenance it now takes from the fluid, in which it is immerfed; becaufe it has now acquired organs to alter or new combine them. Hence it continues to grow whether this fluid, in which it fwims, be formed by the uterus or by any other cavily of the body, as in extra-uterine geftation; and which would feem to be produced by the ftimulus of the fetus on the fides of the cavity, wherc it is found, as mentioned before. And thirdly, there is fill lefs reafon to expect any unnatural change to happen to the child after its birth from the difference of the milk it now takes; becaufe it has acquired a ftomach,

Sect. XXXIX. 5.2. GENERATION.
a ftomach, and lungs, and 'glands, of fufficient power to decompofe and recombine the milk; and thus to prepare from it the various kinds of nutritious particles, which the appetencies of the various Gbrils or nerves may require.

From all this reafoning I would conclude, that though the imagination of the female may be fuppofed to affect the embryon by producing a difference in its early nutriment; yet that no fuch power can affect it after it has obtained a placenta, and other organs; which may fclect or change the food, which is prefented to it either in the liquor amnii, or in the milk. Now as the eggs in pullets, like the fceds in vegctables, are produced gradually, long before thcy are impregnated, it does not appear how any fudden effect of imagination of the mother at the time of impregnation can produce any confiderable change in the nutriment already thus laid up for the expected or defired embryon. And that hence airy changes of the embryon, except thofe uniform ones in the production of mulcs and mulattoes, more probably depend on the imagination of the male parent. At the fame time it feems maniffft, that thofe monftrous births, which confift in fome deficiencies only, or fome redundancies of parts, originate from the deficiency or redundance of the firft nutriment prepared in the ovary, or in the part of the egg immediately furrounding the cicatricula, as defcribed above;
and which continues fome time to excite the firft living filament into adion, after the fimple animal is completed; or ceafes to cxcite it, before the complete form is accomplifhed. The former of thefe circumftances is cvinced by the eggs with double yolks, which frequently happen to our domefticated poultry, and which, I belicve, are fo formed before impregnation, but which would be well worth altending to, both bcfore and after impregnation; as it is probable, fomething valuable on this fubject might be learnt from them. The latter circumftance, or that of deficiency of original nutriment, may be deduced from reverfe analogy.

There are, however, other kinds of monftrous births, which neither depend on deficiency of parts, or fupernumerary ones; nor are owing to the conjunction of animals of different fpecies; but which appear to be new conformations, or new difpofitions of parts in refpect to each other, and which, like the variation of colours and forms of our domefticated animals, and probably the fexual parts of all animals, may depend on the imagination of the male parent, which we now come to confider.
VI. 1. The nice actions of the extremities of our various glands arc exhibited in their various productions, which arc believed to be made by the gland; and not previoufly to exift as fuch in the blood. Thus the glands, which conftitute "the liver, make bile; thoie of the ftomach make
gaftric aeid; thofe beneath the jav, faliva; thofe of the ears, car-wax; and the like. Every kind of gland muft poffefs a peculiar irritability, and probably a fenfibility, at the early fate of its exiftence; and mult be furnifhed with a nerve of fenfe, or of motion, to perceive, and to felect, and to combine the particles, which compofe the fluid it fecretes. And this nerve of fenfe which perceives the different articles which compoie the blood, muft at leaft be conceived to be as fine and fubtile an organ, as the optic or auditory norve, which perceives light or found. See Sect. XIV. 9 .

But in nothing is this nice action of the extremities of the blood-veflels fo wonderfu], as in the production of contagious matter. A fmall drop of variolous contagion diffufed in the blood, or perhaps only by being inferted beneath the cuticle, after a time, (as about a quarter of a linnation,) cxcites the extreme veffels of the fkin into certain motions, which produce a fimilar contegious material, filling with it a thoufand puffules. So that by irritation, or by fenfation in confequence of irritation, or by affociation of motions, a material is formed by the extremities of certain cutaneous veffels, exaclly fimilar to the ftimulating material, which caufed the irritation, or confequent fenfation, or affociation.

Many glands of the body have their motions, and in confequence their fecreted Auids, affected
by pleafurable or painful ideas, fince they are in many inflances influenced by fenfilive affociations, as well as by the irritations of the particles of the paffing blood. Thus the idea of meat, excited in the minds of hungry dogs, by their fenfe of vifion, or of fmell, increafes the difcharge of faliva, both in quantity and vifcidity; as is feen in its hanging down in threads from their mouths, as they fland round a dinner-table. The fenfations of pleafure, or of pain, of peculiar kinds, excite in the fame manner a great difcharge of tears; which appear alfo to be more faline at the time of their fecretion, from their inflaming the eyes and eye-lids. The palencfs from fear, and the blufh of fhame, and of joy, are other inftances of the effects of painful or pleafurable fenfations, on the extremitiés of the arterial fyfiem.

It is probable, that the pleafurable fenfation excited in the ftomach by food, as well as its irsitation, contributes to excite into action the gaffric glands, and to produce a greater fecretion of their fluids. The fame probably occurs in the fecretion of bile; that is, that the pleafurable fenfation excited in the flomach, affects this fecretion by fenfitive aflociation, as well as by irritative affociation.

And laftly it would feem, that all the glands in the body have their fecreted fluids affected, in quantity and quality, by the pleafurable or painful fenfations, which produce or accompany
thofe fecretions. And that the pleafurable fenfations arifing from thefe fecretions may conftitute the unnamed pleafure of exiftence, which is contrary to what is meant by tædium vitæ, or ennui; and by which we fometimes feel ourfelves happy, without being able to afcribe it to any mental caufe, as after an agreeable meal, or in the beginning of intoxication,

Now it would appear, that no fecretion or excretion of fluid is attended with fo much agreeable fenfation, as that of the femen; and it would thence follow, that the glands, which perform this fecretion, are more likely to be much affected by their catenations with pleafurable fenfations. This circumftance is certain, that much more of this fluid is produced in a given time, when the object of its exclufion is agreeable to the mind.
2. A forcible argument, which fhews the neceffity of pleafurable fenfation to copulation, is, that the act cannot be performed without it ; it is eafily interrupted by the pain of fear or bafhfulncfs; and no cfforts of volition or of irritation can effect this procefs, except fuch as induce pleafurable ideas or fenfations. Sce Sect. XXXIII. 1. 1.

A curious analogical circumftance attending, hermaphrodite infects, as finails and worms, ftill further illuftrates this theory ; if the fnail or worm could have impregnated itfelf, there might
have been a faving of a large male apparatus; but as this is not fo ordered by nature, but each fnail and worm reciprocally reccives and gives impregnation, it appears, that a pleafurable excitation feems alfo to have been required.

This wonderful circumflance of many infects being hermaphrodites, and at the fame time not having power to impregnate themfelves, is attended to by Dr. Lifter, in his Exercitationes Anatom. de Limacibus, p. 145; who, amongft many other final caufes, which he adduces to account for it, adds, ut tam triftibus ct frigidis animalibus majori cum voluptate perficiatur venus.

There is, however, mother final caufe, to which this circumfance may be imputed: it was obferved above, that vegetable buds and bulls, which are produced without a mother, are always exact refemblances of their parent; as appears in grafting fruit-trees, and in the flower-buds of the dioiceous plants, which are always of the fame fex on the fame tree; hence thofe hermaphrodite infects, if they could have produced young without a mother, would not have been capable of that change or improvement, which is feen in all other animals, and in thofe vegetables, which are procreated by the male embryon received and nourifhed by the female. Ancl it is hence probable, that if regetables could only lave been produced by buds and bulbs, and not by fexual generation, that there would not at this time
have exifted one thoufandth part of their prefent number of fpecies; which have probably been originally mule-productions; nor could any kind of improvement or ehange have happened to them, except by the difference of foil or elimate.
3. I conclude, that the imagination of the male at the time of eopulation, or at the time of the fecretion of the femen, may fo affect this fecretion by irrlative or fenfitive affociation, as dcfcribed in No. V. 1. of this fection, as to caufe the production of fimilarity of form and of features, with the diftinction of fex ; as the motions of the chiflel of the turner imitate or correfpond with thofe of the ideas of the artifl. It is not here to be underftood, that the firft living fibre, which is to form an animal, is 'produced with any fimilarity of form to the future animal ; but with propenfities, or appetenees, which fhall produce by aceretion of parts the fimilarity of form, feature, or fex, eorrefponding to the imagination of the father.

Our ideas are movements of the nerves of fenfe, as of the optic nerve in recollecting vifible ideas, fuppofe of a triangular piece of ivory. The fine moving fibres of the retina act in a manner to which I give the name of white ; and this action is confined to a defined part of it; to which figure I give the name of triangle. And it is a preceding pleafurable fenfation exifting in my mind, which occafions me to produce this par- ticular motion of the retina, when no triangle is prefent. Now it is probable, that the acting fibres of the ultimate terminations of the fecreting apertures of the veffels of the teftes, are as fine as thofe of the retina; and that they are liable to be thrown into that peculiar action, which marks the fex of the fecreted embryon, by fympathy with the plcafurable motions of the nerves of vifion or of touch ; that is, with certain ideas of imagination. From hence it would appear, that the world has long been miftaken in afcribing great power to the imagination of the female, whereas from this account of it, the real power of imagination, in the act of gencration, belongs folely to the male. See Sect. XII. 3. 3.

It may be objected to this theory, that a man may be fuppofed to have in his mind, the idca of the form and features of the female, rather than his own, and therefore there fhould be a greater number of female births. On the contrary, the general idea of our own form occurs to every one almoft perpetually; and is termed confcioufneis of our exiftence, and thus may effect, that the number of males furpaffes that of females. Sce Sect. XV. 3. 4. and XVIII. 13. And what further confirms this idea is, that the male children moft frequently refemble the father in form, or feature, as well as in fex; and the female moft frequently refemble the mother, in feature, and form, as well as in fex.

It may again be objected, if a female child fometimes refembles the father, and a male child the mother, the ideas of the father, at the time of procreation, muff fuddenly change from himfelf to the mother, at the very inftan't, when the embryon is fecreted or formed. This difficulty ceafes when we confider, that it is as eafy to form an idea of feminine features with male organs of reproduction, or of male features with female ones, as the contrary; as we conceive the idea of a fphinx or mermaid as eafily and as diftinctly as of a woman. Add to this, that at the time of procreation the idea of the male organs, and of the female features, are often both excited at the fame time, by contact, or by vifion.

I afk, in my turn, is the fex of the embryon produced by accident? Certainly whatever is produced has a caufe; but when this caufe is too minute for our comprehenfion, the effect is faid in common language to happen by chance, as in throwing a certain number on dice. Now what caufe can occafionally produce the male or female character of the embryon, but the peculiar actions of thofe glands, which form the embryon? And what can influence or govern thele actions of the gland, but its affociations or catenations with other fenfitive motions? Nor is this more extraordinary, than that the catenations of irritative motions with the apparent vibrations of objects at fea fhould produce ficknefs of the
ftomach; or that a naufeous ftory fhould occafion vomiting.
4. An argument, which cvinces the effect of imagination on the firf rudiment of the embryon, may be deduced from the production of fome peculiar monfters. Such, for inftance, as thofe which have two heads joined to one body, and thofe which have two bodies joined to one head; of which frequent examples occur amongft our domefticated quadrupeds, and poultry. It is abfurd to fuppofe, that fuch forms could exift in primordial germes, as explained in No. IV. 4. of this fcction. Nor is it poffible, that fuch deformities could be produced by the growth of two embryons, or living filaments; which fhould afterwards adhere together; as the head and tail part of different polypi aré faid to do (Blumenbach on Generation. Cadell, London); fince in that cafe one embryon, or living filament, muft have bcgun to form one part firft, and the other another part firft. But fuch monitrous conformations become lefs difficult to comprehend, when they are confidered as an effeet of the imagination, as before explained, on the living filament at the time of its fecretion; and that fuch duplicature of limbs was produced by accretion of new parts, in confequence of propenfitics, or animal appetencies, thus acquired from the malc parent.

For inftance, I can conccive, if a turkey-cock fhould behold a rabbit, or a frog, at the time of procreation,
procreation, that it might happen, that a forcible or even a pleafurable idea of the form of a quadruped might fo occupy his imagination, as to caufe a tendency in the nafeent filament to refemble fuch a form, by the appofition of a duplicature of limbs. Experiments on the production of mules and monfters would be worthy the attention of a Spallanzani, and might throw much light upon the fubject, which at preefent muft be explained by conjectural analogies.

The wonderful effect of imagination, both in the male and female parent, is Shewn in the production of a kind of milk in the erops both of the male and female pigeons after the birth of their young, as obferved by Mr. Hunter, and mentioned before. To this fhould be added, that there are fome inftances of men having thad milk fecreted in their breafts, and who have given fuck to children, as recorded by Mr. Buffon. This effect of imagination, of both the male and female parent, feems to have been attended to in very early times; Jacob is faid not only to have placed rods of trees, in part ftripped of their bark, fo as to appear foutted, but alfo to have placed fpotted lambs before the flocks, at the time of their copulation. Genefis, chap. xxx. verfe 40.
5. In refpect to the imagination of the mother, it is difficult to comprehend, how this can produce any alteration in the fetus, except by affect-
ing the nutriment laid up for its firf reception, as defcribed in No. V. 2. of this fection, or by affecting the nourifhment or oxygenation with which the fupplies it afterwards. Perpetual anxiety may probably affect the fecretion of the liquor amnii into the uterus, as it enfecbles the whole fyftem; and fudden fear is a frequent caufe of mifcarriage; for fear, contrary to joy, decreafes for a time the action of the extremities of the arterial fyficm ; hence fudden palenefs fucceeds, and a fhrinking or contraction of the veffels of the fkin, and other membranes. By this circumftance, I imagine, the terminations of the placental veffels are detached from their adhefions, or infertions, into the membrane of the aterus; and the death of the child fucceeds, and confequent mifcarriage.

Of this I recollect a remarkable inffance, which could be afcribed to no other caufe, and which I fhall thercfore relate in few words. A healthy young woman, about twenty years of age, had been about five months pregnant, and going down into her cellar to draw fome beer, was frighted by a fervant boy farting up from behind the barrel, where he had concealed himfelf with defign to alarm the maid-fervant, for whom he miftook his miffefs. She came with difficulty up fairs, began to flood immediately, and mifcarried in a few hours. She has fince
borne feveral children, nor ever had any tendency to mifcarry of any of them.

In refpect to the power of the imagination of the male over the form, colour, and fex of the progeny, the following inftances have fallen under my obfervation, and may perhaps be found not very unfrequent, if they were more attended to. I am acquainted with a gentleman, who has one child with dark hair and eyes, though his lady and himfelf have light hair and eyes; and their other four children are like their parents. On obferving this diffimilarity of one child to the others he affured me, that he believed it was his own inagination, that produced the difference ; and related to me the following ftory. He faid, that when his lady lay in of her third child, he became attached to a daughter of one of his inferior tenants, and offered her a bribe for her favours in vain; and afterwards a greater bribe, and was equally unfucceffful; that the form of this girl dwelt much in his mind for fome weeks, and that the next child, which was the dark-eyed young lady above mentioned, was exceedingly like, in both features and colour, to the young woman who refufed his addreffes.

To this inftance I muft add, that I have known two families, in which, on account of an intailed effate in expectation, a male heir was moft eagerly defired by the father; and on the contrary, girls were produced to the feventh in one,
and to the ninth in another; and then they had cach of them a fon. I conelude, that the great defire of a male heir by the father produeed rather a difagreeable than an agreeable fenfation; and that his ideas dwelt more on the fear of generating a female, than on the pleafurable fenfations or ideas of his own male form or organs at the time of eopulation, or of the fecretion of the femen ; and that hence the idea of the female character was more prefent to his mind than that of the male one ; till at length in defpair of generating a male thefe ideas eeafed, and thofe of the male character prefided at the genial hour.
6. Hence I conclude, that the act of generation eannot exift without being aecompanied with ideas, and that a man muft have at that time cither a general idea of his own male form, or of the form of his male organs; or an idea of the female form, or of her organs; and that this marks the fex, and the peeuliar refemblances of the ehild to either parent. From whence it would appear, that the phalli, which were hung round the neeks of the Roman ladies, or worn in their hair, might have effect in producing a greater proportion of male clildren ; and that the ealipædia, or art of begetting beautiful ehildren, and of procreating cither males or females, may be taught by affecting the imagination of the male-parent; that is, by the fine extremities of the feminal glands imitating the actions of
the organs of fenfe cither of fight or touch. But the manner of accomplifhing this cannot be unfolded with fufficient delicacy for the public cye; but may be worth the attention of thofe, who are ferioully interefted in the procreation of a male or fomate child.

Recapitulation.

VII. 1. A certain quantity of nutritive particles are produced by the female parent before impregnation, which require no further digellion, fecretion, or oxygenation. Such are feen in the unimpregnated cggs of birds, and in the unimpregnated feed-veffels of vegetables.
2. A living filament is produced by the male, which being inferted amidft thefe firft nutritive particles, is ftimulated into action by them; and in confequence of this action, fome of the nutritive particles arc embraced, and added to the original living filament ; in the fame mannor as common nutrition is performed in the adult animal.
3. Then this new organization, or additional part, becomes ftimulated by the nuritive particles in its vicinity, and fenfation is now fuperadded to imitation; and other particles are in confequence embraced, and added to the living filament; as is feen in the new granulations of fefh in ulecrs.

By the power of affociation, or by irritation, the
the parts already produced continue their motions; and new ones are added by fenfation, as above mentioned; and lafly by volition, which laft fenforial power is proved to exift in the fetus in its maturer age, becaufe it has evidently periods of activity and of neeping; which laft is another word for a temporary fufpenfion of volition.

The original living filament may be conceived to poffers a power of repulfing the particles ap-. plied to ccrtain parts of it, as well as of embracing others, which ftimulate other parts of it; as thefe powers exift in different parts of the mature animal ; thus the mouth of every gland embraces the particles or fluid, whieh fuit its appetency; and its excretory duct repulfes thofe particles, which are difagreeable to it.
4. Thus the outline or miniature of the new animal is produced gradually, but in no great length of time; becaufe the original nutritive particles require no previous preparation by digeftion, fccretion, and oxygenation: but require fimply the felection and appofition, which is performed by the living filament. Mr. Blumenbach fays, that he poffeffes a human fetus of only five weeks old, whieh is the fize of a common bee, and has all the features of the face, every finger, and every toe complete; and in which the organs of gencration are diftinctly feen. P. 76. In another fetus, whofe head was not larger than a
pea, the whole of the bafis of the fkull with all its depreffions, apertures, and proceffes, were marked in the moft fharp and diftinct manner, though without any offification. Ib.
5. In fome cafes by the nutriment originally depofited by the mother the filament acquires parts not exactly finmilar to thofe of the father, as in the production of mules and mulattoes. In other cafes, the deficiency of this original nutriment caufes deficiencics of the extreme parts of the fetus, which are laft formed, as the fingers, toes, lips. In other cafes, a duplicature of limbs," is cauled by the fuperabundance of this original nutritive fluid, as in the double yolks of eggs, and the chickens from them with four legs and four wings. But the production of other monfters, as thofe with two heads, or with parts placed in wrong fituations, feems to arife from the imagination of the father being in fome manner imitated by the extreme veffels of the feminal glands ; as the colonrs of the fpots on eggs, and the change of, the colour of the hair and feathers of animals by domeftication, may be caufed in the fame manner by the imagination of the mother.
6. The living filament is a part of the father, and has therefore certain propenfities, or appetencies, which belong to him; which may have been gradually acquired during a million of generations, cven from the infancy of the habi-

$$
\text { vox. II. } T \text { table }
$$

table earth ; and which now poffeffes fuch properties, as would render, by the appofition of nutritious particles, the new fetus exactly fimilar to the father; as occurs in the buds and bulbs of vegetables, and in the polypus, and tænia or tape-worm. But as the firft nutriment is fupplied by the mother, and therefore refembles fuch nutritive particles, as have been ufed for her. own nutriment or growth, the progeny takes in part the likeness of the mother:

Other fimilarities of the excitability, or of the form of the mate parent, fuch as the broad or narrow fhoulders, or fueh as conflitute certain hereditary difeafes, as fcrofula, epilepfy, infasity, have their origin produced in one or perhaps two generations; as in the progeny of thofe who drink much vinous fpirits; and thofe hereditary propenfities eeafe again, as I have obferved, if one or two fober generations fucceed; otherivife the family becomes extinet.

This living filament from the father is alfo liable to have its propenfities, or appetencies, altered at the time of its production by the imagination of the male parent ; the extremities of the feminal glands imitating the motions of the organs of fenfe; and thus the fex of the cmbryon is produced; which may be thus made a malc or a female by affecting the imagination of the father at the time of impregnation. See Sect. XXXIX. 6.3. and 7 .
7. After
\%. After the fetus is thus completely formed together with its umbilical veffels and placenta, it is now fupplicd with a different kind of food, as appears by the clifference of confiftency of the' different parts of the white of the cgg, and of the liquor amnii, for it has now acquired organs for digeftion or fccretion, and for oxygenation, though thiey are as yet feeble; which can in fome degrec change, as well as felect, the nutritive 'particles, which are now prefented to it. But may yet be affected by the deficiency of the quantity of nutrition fupplied by the mother, or by the degree of oxygenation fupplied to its placenta by the maternal blood.
The augmentation of the complcte fetus by additional particles of nutriment is not accomplifhed by diftention only, but by appofition to every part both external and internal ; each of which acquires by animal appetencies the new addition of the particles which it wants. And hence the enlarged parts are kept fimilar to their prototypes, and may be faid to be extended; but thcir extenfion mult be conceived only as a neceffary confequence of the enlargement of all their parts by appofition of ncw particles.

Hence the new appofition of parts is not produced by capillary attraction, becaufe the whole is extended; whereas capillary altraction would rather tend to bring the fides of flexille tubes together, and not to diffend them. Nor is it T 2 produced
produced by chemical affinities, for then a folution of continuity would fucceed, as when'fugar is diffolved in water; but it is produced by an animal procefs, which is the confequence of irritation, or fenfation; and which may be termed animal appetency.

This is further evinced from experiments, which have been inftituted to fhew, that a living mufele of an animal body requires greater force to break it, than a fimilar mufcle of a dead body. Which cvinces, that befides the attraction of cohefion, which all matter poffeffes, and befides the chemical attractions of affinities, which hold many bodics together, there is an animal adhefion, which adds vigour to thefe common laws of the inanimate world.
8. At the nativity of the child it depofits the placenta or gills, and by expanding its lungs acquires more plentiful oxygenation from the currents of air, which it muft now continue perpetually to refpire to the end of its life ; as it now quits the liquid element, in which it was produced, and like the tadpole, when it changes into a frog, becomes an aerial animal.
9. As the habitable parts of the earth have been, and continue to be, perpetually increafing by the production of fea-fhells and corallines, and by the recrements of other animals, and vegetables; fo from the beginning of the exiftence of this terraqueous globe, the animals, which
which inhabit it, have conftantly improved, and are ftill in a ftate of progreffive improvement.

This idea of the gradual generation of all things feems to have been as familiar to the ancient philofophers as to the modern ones; and to have given rife to the beautiful hieroglyphic figure of the $\pi \rho_{\text {orov }}$ wov, or firft great egg, produced by NIGHT, that is, whofe origin is involved in obfcurity, and animated by egos, that is, by Drvine Love; from whence proceeded all things which exift.

Appendix.

VIII. 1. Since the former publication of the preceding Section on Generation, I have been induced in my treatife on Phytologia, to give more attention to the lateral or folitary generation of vegetables in the production of their buds, hoping from thence to throw fome light on their fexual generation in the production of feeds; and in confequence on the propagation of more perfect animals, which I hall here relate, believing that it may intereft the philofophical reader, obferving only, that by the vegetable facts here attended to, I am now induced to believe, that the embryons of complicate animal and vegetable bodies are not formed from a fingle filament as above delivered; but that their flructure commences in many parts at the fame time, though it
is probable, that the moft fimple or firft exordium of animation was begun by a fingle filament, and continues to do fo in the fpontancous production of the fmalleft microfeopic animals, which do not appear to have been generated by other animalcula fimilar to themfelves, as further fpoken of in No. 11.5. of this Section.

1. It is fhewn at large in the work above mentioned, that every bud of a tree is an individual vegetable, and confifts of the plumula or leaf at its fummit, of a long caudex extending from this fummit downivards to the earth, forming a filament of the bark, and laftly of radieles bencath the foil : it is alfo thewn, that every bud poffeffes the power of germination or reproduction, not only in the axilla of the leaf, which is moft eommon, but from any part of the long eaudex gemma above mentioned, as appears from new buds fpringing out from any part of the bark, when the top of a braneh is eut off.

Now if a feion of a nonpareil apple be ingrafted on a crab ftock, and a golden-pippin be ingrafted on the nonpareil, what happens? The eaudex of the bud of the golden-pippin confifts of its proper abforbent veffels, arteries, and veins, till it reaches clown to the nompareil foek; and then the continuation of its caudex downwards confifts of veffels fimilar to thofe of the nonpareil; and when its caudex defeends fill
lower, it confifts of veffels fimilar to thofe of the crab-ftock.

The truth of this is fhewn by two circumftances; firf, becaufe the lower parts of this compound tree will occafionally put forth buds fimilar to the original ftock. And, fecondly, becaule in fome ingrafted trees, where a quickgrowing feion has been inferted into a ftock of llower growth, as is often feen in old cherrytrees, the upper part of the trunk of the tree. has become of almoft double the diameter of the lower part. Both which occurrences fhew, that the lower part of the trunk of the tree continues to be of the fame kind, though it muft have been fo repeatedly covered over with new circles of wood, bark, and cuticle.

Now as the caudex of each bud, which paffes the whole length of the trunk of the tree, and forms a communication from the upper part or plninula, to the lower part or radicle, muft confift in thefe doubly ingrafted tiees of three different kinds of caudexes, refembling thofe of the eliffcrent flocks or fcions; we acquire a knowledge of what may be termed a lateral or paternal mule, in contradiftinction to a fcxual mulc. For as in thefe trees thus combined by ingraftment every bud has the upper part of its caudex that of a golden-pippin, the middle part of it that of a nonparcil, and the lower part of it that of a crab; if thefe caudexcs, which conftitute the
filaments of the bark could be feparated intire from the tree with their plumules and radicles, they would exhibit fo many lateral or paternal mules, confifting of the connected parts of their three parents; the plumula belonging to the upper parent, and the radicle to the lower one, and the triple eaudex to them all.

A feparation of thefe buds from the parent plant is faid to have been obferved by Mr. Blumenbach, in the conferva fontinalis, a vegetable which confifts of fmall fhort flender threads, which grow in our fountains, and fix their roots in the mud. He obferved by magnifying glaffes, that the extremities of the theeads fwell, and form fmall tubera or heads : which gradually feparate from the parent threads, attach themfelves to the ground, and become perfect vegetables; the whole progrefs of their formation can be obferved in forty-eight hours. Obfervations on plants by 'Von Uflar. Creech, Edinb.
2. The lateral propagation of the polypus found in our ditches in July, but more particularly that of the hydra ftentorea, is wonderfully analogous to the above idea of the lateral generation of vegetables. The hydra ftentorea, according to the account of Monf. Trembley, multiplies itfelf by'fplitting lengthwife; and in twenty-four hours thefe divifions, which adhere to a common pedicle, refplit, and form four diftinct animals, Thefe four in an equal time fplit
again, and thus double their number daily; till they aequire a figure fomewhat refembling a nofegay. The young animals afterwards feparate from the parent, attach themfelves to aquatic plants, and give rife to new colonies.

Another curious animal fact is related by Blumenbach in his Treatife on Generation concerning the fiefh water polypus. He cut two of them in halves, which were of different colours, and applying the upper part of one to the lower part of the other by means of a glafs tube, and retaining them thus for fome time in contact with cach other, the two divided extremities united, and became one animal. The facil union of the divided halves of different polypi is alfo afferted by Mr. Adams. Treatife on Microfcopes.

The intelligent reader has already antieipated me in applying there wonderful modes of lateral animal reproduction and conjunction, to the lateral propagation and ingraftment of vegetables. The junction of the head part of one polypus to the tail-part of another is exactly reprefented by the ingraftment of a feion on the flock of another tree, the plumula or apex of eaeh bud with the upper part of its calidex joins to the long caudex of the ftock, whieh paffing down the trunk terminates in the radicles of it. And if this compound vegetable could be feparated longitudinally from the other long filaments of the bark in its vicinity, like the fibres of the bark of
the mulberry tree prepared at Otaheite, or as the bark of hemp and flax are prepared in this country, as the young ones of the hydra ftentorea feparate from their parents, it might claim the name of a lateral or patcrnal mule, as above mentioned.
3. It hence appears, that every new bud of a tree, where two fcions have been inferted over each other on a ftock, if it could be feparated from the plume to the radicle, muft confift of three different kinds of caudex; and might therefore be called a triple lateral mule. And that hence it follows, that every part of this new triple caudex muft have been feparated or fecreted laterally from the adjoining part of the trunk of the tree; and that it could not be formed, as I formerly believed, from the roots of the plume of the bud defcending from the upper part of the caudex of it to the earth. A circumftance of great importance in the inveftigation of the curious fubject of the lateral generation of vegetables, and of infects.

One might hence fufpect, that if Blumenbach had attended to the propagation of the polypus, which he had compofed of two half polypi, that the young progeny might have poffeffed two colours refembling the compound parent, like the different caudexes of ingrafted trces; an cxperiment well worthy repeated obfervation.
4. Another animal fact ought alfo to be here mientioncd,
mentioned, that many infects, as common earth worms as well as the polypus, are faid to poffers fo much life throughout a great part of their fyftem ; that they may be cut into two or more pieces without deftroying them; as each piece will acquire a new head, or a new tail, or both, and the infect will thus become multiplied! How exactly this is refembled by the long caudex of the buds of trees; which poffefs fuch vegetable life from one extremity to the other, that when the head or plume is lopped off, it can produce a new plume, and when the lower part is cut off, it can produce now radicles; and may be thus wonderfully multiplied!

This curious vegctable phenomenon is worthy our attention and remembrance; for as each filament of the new bark of a tree conftitutes a caudex of an embryon bud; when the fummit of a twig is lopped off, which contained the plumules or embryon leaves of many of them; each embryon caudex can generate new plumules or embryon leaves; and new radicles, when the lower part of a twig is cut off, and the upper part planted; which demonftrates, that the primary parts of a vegetable embryon may produce fecondary parts; and that hence it is not neceffary, that the whole of an animal fetus fhould be formed at the fane time.
5. Hence we acquire fome new and important ideas concerning the lateral generation of vege-
tables, and which may probably contribute to elucidate their fexual generation. Thefe are, firlt, that the parts of the long caudex of each new bud of an ingrafted tree, and confequently of all trees, are feparated or fecreted from the correfpondent or adjoining parts of the long caudex of the laft year's bud, which was its parent. And not that it confifts of the roots of each new bud fhot down from the plumula or apex of it; as I formerly fuppofed. And that thefe various molecules or fibrils fecreted from the caudex of the laft year's buds adjoin and grow together beneath the cuticle of the trunk of the tree; the upper ones forming the plumula of the new bud, which is its leat or lungs to acquire oxygen from the atmofphere ; and the lower ones forming the radicles of it, which are abforbent veffels to acquire nutriment from the carth.

Secondly, that every part of the caudex of an ingrafted tree, and confequently of all trees, can generate or produce a new plumula, when the upper part of it is ftrangulated with a wire or cut off; or otherwife when it is fupplied more abundantly with nutriment, ventilation, and light. And that each of thefe new buds thus produced refembles that part of the ftock in compound trees, where it arifes. Ihus in the triple tree above mentioned a bud from the upper part of the long caudexes, which form the filaments of the bark, would become a golden-pippin branch, a bud
from the middle part of them would become a nonpareil branch, and a bud from the lower part a crab branch.

Thirdly, another wonderful property of this lateral mule progeny of trees compounded by ingraftment confirts in this, that the new mule may confift of parts from three or four or many parents; when to many different fcions are ingrafted on each other, whence a queftion may arile, whether a mixture of two kinds of antherduft previous to its application to the figma of flowers might not produce a threefold mule partaking of the likenefs of both the males?
6. On this nice fubject of reproduction, fo far removed.from common apprehenfion, the patient reader will excufe a more prolix inveftigation. The attriction of all matter to the centres of the planets, or of the fun, is termed gravitation, that of particular bodies to each other is generally. called chemical affinity; to which the attractions belonging to electricity and magnetifin appear to be allied.

In thefe latter kinds of attraction two circumftances feem to be required, firft, the power to attract poffeffed by one of the bodies, and fecondly, the aptitude to be attracted poffeffed by the other. Thus when a magnet attracts iron, it may be faid to poffefs a fepecific tendency to unite with iron; and the iron may be faid to poffefs a fpecific aptitude to be united with the mag-
net. The former appears to refide in the magnet, becaufe it ean be deprived of its attractive power, which can alfo be reftored to it. And the' iron appears to poffefs a fpecific aptitude to be united with the magnet, beeaufe no other metal will approach it. In the fame manner a rubbed glafs tube or a rubbed fisck of fealing wax may be faid to poffers a fpecifie tendericy to unite with a light ftraw, or hair, and the feraw or hair to poffefs a fpecifie aptitude to unite with the rubbed glafs or fealing wax ; becaufe the fpecific attraction to the rubbed glafs or fealing wax can be withdrawn or reflored ; to which may be added, that fome chemical combinations may arife from the fingle attraction of one body, and the aptitude to be attracted of another. Or they may be owing to reciprocal attractions of the two bodics, as in what is termed by the chemifts double affinity, which is known to be fo powerful as to feparate thofe bodies, which are held together by the fimple attraction probably of one of them to the other; which other poffeffes only an aptitude to be attracted by the former.

It is probable, that in fome of the moft fimple combinations of the particles of inanimate matter, two of them may be ftrongly united by reciprocal attractions to each other; that in other fimple combinations two particles may be held together, though lefs firmly, by the attraction of one and the aptitude to be attracted of the other. Thus I
fufpect that carbon and oxygen rufh together by their reciprocal attractions producing explofion, and being afterwards not cafily feparable; while azote or nitrogen is lefs fumly united with oxygen by the attraction of one of them, and only the aptitude to be attracted of the other. If this circumftance could be nicely afcertained, the theory of chemical affinitics might poffibly advance a ftep further in the explanation of fome difficult phenomena, as of the heat generated in the explofion of various matcrials, with which oxygen ismore loofely united, when applied to ignited carbon; as of the acid of nitre, and feveral metallic oxydes; as well as of the general circumftances of combuftion and inflammation, as of phofphorus in the atmofphere, and of oil of cloves with nitrous acid.
7. The above account of the tendencies to union of unorganized or inanimate matter is not given as a philofophical analogy; but to facilitate our conception of the adjunctions or concretions obfervable in organized or animated bodies ; which conftitute their formation, their nutrition, and their growth. Thefe may be divicled into two kinds; firft the junction or union of animated bodies with inanimate matter, as when fuit or flefh is fwallowed into the ftomach, and becomes abforbed by the lacteals; and the fccond, where living particles coalefce or concrete together; as
in the formation, nutrition, or conjunction of the parts of living animals.

In refpect to the former the animal parts,' as the noftrils and palate, poffefs an appetency; when ftimulated by the feent and flavour of agreeable food, to unite themfelves with it ; and the inanimate material poffeffes an aptitude to be thus united with the animal organ. The fame oecurs, when the food is fwallowed into the fomach; the mouths of the lacteal veffels being agreeably ftimulated poffers an appetency to abforb the particles of the digefting mafs; which is in a fituation of undergoing chemical changes, and poffeffes at fome period of them an aptitude to ftimulate, and to be united with the mouths of the abforbent lacteals.

But when thefe abforbed particles of inanimate matter have been circulated in the blood, they feem gradually to obtain a kind of vitality; whence Mr. John Hunter, and I believe fome antient philofophers, and the divine Mofes, afferted, that the blood is alive; that is, that it poffeffes fome degree of organization, or other propertics, different from thofe of inanimate matter; which are not producible by any chemical procefs, and which ceafe to cxift along with the life of the animal. Hence for the parpofe of nutrition there is reafon to fufpect, that two circumftances are neceffary, both dependant upon
life, and confequent activity; thefe are firf an appetency of the fibils of the fixed organization, which wants nutrition; and fecondly a propenfity of the fluid molecules exifting in the blood, or fecreted from it, to unitc with the organ now fitmulated into action. So that nutrition may be faid to bceffected by the embrace or coalefcence of the fibrils, which poffefs nutritive appetencies, with the molecules, which poffefs nutritive propenfities, or in other words of particles, which poffefs reciprocal appetencies to cmbrace each other.
s. If the philofopher, who thinks on this fubject, fhould not be inclined to bclieve, that the whole of the blood is alive, he cannot eafily deny lifc to that part of it, which is fecreted by the organs of generation, and conveys vitality to the new embryon, which it produces. Hence though in the procefs of nutrition the activity of two kinds of fibrils or molecules may be fufpectcd , yet in the procefs of the generation of a new vegetable or animal, there feems great reafon to believe, that both the combining and combined particles are enducd with vitality; that is, with fome degree of organization or other properties not exifting in inanimate matter, which we beg leave to denominate fibrils with formativc appctencics, and molecules with formative propenfities; as the former may feem to poffefs a grcater degrec of organization than the latter.

And thus it appears, that though nulrition may be conceived to be produced by the animated vol. if.
fibrils of an organized part being ftimulated into action by inanimate molecules, which they then embrace; and may thus be popularly eompared to the fimple attractions of chemiftry; yet that in the production of a ncw cmbryon, whether vegetable or animal, both the fibrils with formative appetencies and the moleeules with formative propenfities reeiproeally ftimulate and embrace each other, and inflantly coalefce; and may thus popularly be compared to the reeiprocal attractions of fome of the atoms of inanimate matter, or to the double affinities of chemiftry. But there are animal facts, which may be compared to both thefc, and are thence more philofophically analogous to them; and thefe are the two great fupports of animated nature, the paffions of hunger and of love. In the former the appeteney refidcs only in the ftomach, or perhaps in the cardia ventriculi, but the object confifts of inanimate matter ; in the latter there exift reeiprocal appetencies and propenfities in the male and fcmale, which mutually cxeite them to embrace each other. Two other animal facts are equally analogous; the thirft, which refides at the upper end of the efophagus, and though it poffeffes appetency itfelf, its object is inanimate matters; but in lactefcent femalcs, when they give fuck to their young, there cxifis a reciprocal appeteney in the mother to part with her milk, and in the young offspring to receive it.

This then finally I conceive to be the manner: of the production of the lateral progeny of vegetables. The long caudex of an exifting bud of a trce, which confitutes a fingle filament of the prefent bark, is furnifhed with glands numerous as the perfpirative or mucous glands of animal bodies; and that there are of two kinds, the one fecreting from the vegetable blood the fibrils with formative appetencies, correfpondent to the mafculine fecretion of animals; and the other fecreting from the vegetable blood the molecules with formative propenfities, correfpondent to the feminine fecretion of animals, and then that both thefe kinds of formative particles are depofited beneath the cuticle of the bark along the whole courfe of it, and inftantly embrace and coalefce, forming a new caudex along the fide of its parent, with vegetable life, and with the additional powers of nutrition, and of growth.
9. This then is the great fecret of nature. More living particles, fome with appetencies, and fome with propenfities, are produced by the powers of vitality in the fabrication of the vegetable blood, than are neccffary for nutrition, or for the reftoration of decompofing organs. Thefe are fecreted by different glands, and detruded externally, and produce by thcir combination a new vital organization beneath the cuticles of trees over the old one. Thefe new combinations of vital fibrils and moleculcs acquire new appeten-

$$
\text { U } 2
$$

cies,
cies, and fabricate molecules with new propenfities; and thus poffers the power of forming the leaf or lungs at one extrimity of the new caudex ; and the radicles or abforbent veffels at the other end; and fome of them, as in the central buds, which terminate the branches, finally form the fexual organs of reproduction, which conftitute the flower; all which are fecondary parts of the new cmbryon or fctus, as fhewn in number 9.4 . of this fection.

That new organizations of the growing fyftem acquirc now appetencics appears from the production of the paffion for generation, as foon as the adapted organs are complete, and alfo from the variation of the palate, or defire for particular kinds of food, as we advance in life, as from milk to flefh; thus as a popular.allufion, not as a philofophical analogy, we may again be allowed to apply to the combinations of chemiftry. Where two different kinds of particles unite, as acids and alcalies, a third fomething is produced, which poffefes attractions diffimilar to thofe of either of them.

And that new organizations form new molecules, appears from the fecretions of the feminal and uterine glands, when they have aequired their maturity ; and from the pectoral ones of lactefcent females.
10. In the lateral propagation of vegetable buds, as the fuperfluous fibrils or molccules, which
which were fabricated in the blood, or detached from living organs, and poffefs nutritive or formative appetencies and propenfities; and which were more abundant, than were required for the nutrition of the parent regetable bud, when it had obtained its full growth, were fecreted by innumeratile glands on the various parts of its furface beneath the general cutiele of the tree, and there en:bracing and coalefcing form a new embryon caudex, which gradually produces a new plumula and radicles. And as the different parts of the new caudex of a compound tree re-femble the parts of the parent caudex, to which it adheres, this important cireumftance is hewn beyond all doubt, that different fibrils or molecules were detached from different parts of the parent caudex to form the filial one.

So in the fexual propagation of vegetables the fuperfluous living fibrils or molecules detached from various parts of the fyftem, and floating in the blood, appear to be Ceereted from it by two kinds of glands only, thofe which conflitute the anthers, and thofe which conftitute the pericarp of fowers. By the former I fuppofe the fibrils with formative appetencies and with nutritive appetencies to be fecreted; and by the later the moleculcs with formative and with nutritive propenfities. Afterwards, that thefe fibrils with formative and nutritive appeteneies becomemixed in the periearp of the flower with the corU 3 refpondent refpondent molecules with formative and nutritive propenfities, and that a new embryon is infrantly produced by their reciprocal embrace and coalefcence.

And that parts of this new organization afterwards acquire new appetencies, and form new molecules, and thus gradually produce other parts of the growing feed, which do not at firft appear, as the plumula, radicles, cuticle, and the glands of reproduction in the pericarp and anthers, which correfpond in the animal fetus to the lungs, inteftines, cuticle, and the organs, which difinguifh the fexes, and are their parts of fecondary formation.

If fecondary parts of a vegetable embryon were not fabricated from the primary parts, or firft rudiments of it, the flowers of the clafs diœcia of Linneus could not produce both male and female feeds, as the male and female organs of-reproduction refide on different plants. For as the male plants produce buds fimilar to themfelves, which may be termed male buds; and the female plants produce buds fimilar to themfelves, which may be termed female buds, it would feem imporfible for the flowers to generate female feeds according to the theory of reproduction above delivered. As the male, not being an hermaphrodite, cannot be fuppofed to focrete any fibrils with appetencies proper to produce female organs, as no fuch can exift in his blood, which muft therefore
therefore be fabricated afterwards by the new appetencies acquired by the new organizations of the growing embryon.
11. From this new doctrine of a three-fold vegetable mule by lateral propagation, as the new bud of a tree, which has had two fcions ingrafted on it one above another ; in which it is inconteftibly fhewn, that different fibrils or molecules are detached from different parts of the parent caudex to form the filial one, which adheres to it; we may fafely conclude, as it is deducible from the ftrongeft analogy, that in the production of fexual mules, fome parts of the new embryon were produced by, or detached from, fimilar parts of the parent, which they refemble. And that as thefe fibriis or molecules floated in the circulating blood of the parents, they were collected feparately by appropriated glands of the male or female; and that finally on their mixture in the matrix the new embryon was generated, refembling in fome parts the form of the father, and in other parts the form of the mother, according to the quantity or activity of the fibrils or molecules at the time of their conjunction.

And laftly, that various parts of the new organizations afterwards acquired new appetencies, and formed molccules with new propenfities, and thus gradually produced other fecondary parts of the growing fetus, as the fkin, nails, hair, and the organs, which diftinguifh the fexes.

If the molecules feereted by the female organ into the pericarp of flowers, or into the ovary of animals, were fuppofed to confift of only unorganized or inanimate particles; and the fibrils feereted by the male organ only to poffefs formative appeteneies to felect and combine with them; the new embryon muft probably have always refembled the father, and no mules could have had exiftence.

But by the theory above delivered it appears, that the new offspring, both in vegetable and animal reproduction, whether it be a mule or not, muft fometimes more refemble the male parent, and fometimes the female one, and fometimes to be a combination of them both, as in the Epigram of Martial.

> Dum dubitat natura gravis puerum faceretne puellam, Factus es, O pulcher, pene puella, puer.

1X. 1. The foregoing remarks on vegetable gencration are chiefly tranfcribed from my work on Phytologia, Sect. VII. and may be applied to animal reproduction; fince from this analogy to the lateral propagation of vegetable buds, if we fuppofe, that redundant fibrils with formative appetencies are produced by, or detached from, various parts of the male animal, and circulating in his blood, are fecreted by adapted glands, and conftitute the feminal fluid; and that icdundant molecules with formative aptitudes or
propenfities are produced by, or detached from, various parts of the female, and circulating in her blood, are fecreted by adapted glands, and form a refervoir in the ovary; and finally that when thefe formative fibrils, and formative molecules, become mixed together in the uterus, that they coalefce or embrace each other, and form different parts of the new embryon, as in the cicatricula of the impregnated egg; we may more readily comprehend fome circumftances, which are difficult to underffand on any other fyftem of generation.

It muft be obferved, that this theory differs from that of M. Buffon; as he conccives the fame organized particles to cxift in the generative fecretions both of the male and female parent; whercas in this theory it is fuppofed, that particles completely organized are too large to pals the glands of cither fcx, and that thofe, which are feen in the femen by microfcopes, are the confequence of the flaguation of the fluid, as in the puftules of the itch, and in the liquid feces of dyfenteric patients. Hence the fibrils. with formative appctencies and the molccules with formative aptitudes or propenfities muft coalcfec to produce the firft organization.

Secondly, in M. Buffon's theory the fetus is fuppofed to be inftantancoufly produced all at once; whereas in our theory there is believed to exyif a primary, and fecondary formation; that

208 GENERATION. Sect. XXXIX. 9 . is, that many effential parts, as the brain and the heart, are primarily produced from the congrefs of the fibrils with formative appetencies, and the molecules with formative aptitudes or propenfities; and that thefc combinations acquire new appetencies, and produce or unite with molecules with new aptitudes, and thus generate other parts of fecondary formation, as ribs, fingers, inteftines, with the external form, and the glands, which conftitute the difference of the fexes.

One great objection to the theory delivered in the former part of this fcction on generation is removed by this idea of the exiftence of formative fibrils, and formative molecules, which by their coalefcence generate various parts of the embryon at the fame time; which is, that in fome monftrous or imperfect fetufes different parts only are produced, inftead of the whole; and fuch parts as would not appear to be primary ones. Such are the teeth and hair, which have been found in moles or falfe conceptions, as they exift naturally at a diftance from the brain and heart, which are efteemed to be the centre of vitality, and are firft vifible in the embryon chick. Many other parts in monftrous births are faid to lave been completely formed, where no brain or heart has exifted ; the production of which on other ideas of generation cannot be explained; unlefs it be fuppofed, that an intire embryon
embryon had been at firft generated, all of which had perifhed, and had been abforbed, except the parts which conftitute the monftrous or imperfect fetus at its birth, which would be difficult to explain.

Many inftances of very imperfect fetufes are recorded by Monf. J. J. Sue in his Rechearches fur la Vitalite ; and in the Comment. of Leipfic. I. 17. p. 528. M. Sue diffected a fetus of five months old, which had no head, nor cheft, nor ftomach, nor large inteftines, and yet the inferior half of the lower belly was complete, with the umbilical cord, male organs of generation, and one complete inferior limb, of which a print is given in Magazin. Encycloped. 1797. This monftrous fetus, which was only half of it formed, fhews, that the embryon is not always produced from one beginning, but probably from many: as there was no brain or heart, the connection of nerves in the lower part of the fpine muft have ferved the purpofe of the former; and a junction of the large arteries and veins muft have ferved the purpofe of a heart, produeing. a circulation like that in the liver, or in the aorta and vena cava of fifh. For a previous production and reabforption of the other more effential parts of the fetus, as the brain and heart, with all the upper parts of the body, and inteftines, would feem to be attended with ftill greater difficulties.

This miftake of conceiving the embryon to be- gin its formation in one point only might more readily be fallen into from our habitually confidering an animal as an individual entity; which it feems not to be, till an union of the nerves from every part is formed in the common fenforium, and produces a general Cenfibility, which is thus diftinguifhed from irritability, which may refide in parts even when detached from the fyrtem, as is feen in the contractions of the heart of a viper taken out of the body, or of limbs recently cut off.
2. Another thing diffieult to conceive from thore theories, which fuppofed the firft rudiment to confift of a fingle entity, was to anfwer the curious queftion, whether the brain, or heart and arteries, were firft formed; as the motions of the arterial fyftem previoully exerted feem to have been neceffary for the fecretion of fenforial power in the brain, and eonverfely thofe motions of the arterial fyftem feem previoufly to require the fenforial power derived from the brain.

This diffieulty vanifhes, when we believe, that many parts of the young embryon can be begun at the fame time, as various formative fibrils and formative molecules coalefce, as they come into contact with eaeh other; and thus the rudiments of the brain and of the heart may be fabricated at the fame inflant of time.
3. If fibrils with formative appetencies, and molceules with formative aptitudes or propenfi-
ties exift in the circulation both of males and females, why do they not, coalefce therc? This feems an unanfiwerable objcetion to M. Buffon's theory, who holds, that organic particles exift in the circulation ; but in the fyfiem above delivered, no organić particles exift in the blood in their combined ftate; and hence no microfcopic animalcula are feen in blood rccently drawn, though they may appear after fome hours fagnation ; but the formative fibrils only and formative molccules are believed to exift in the circulation ; and that they do not produce combinations there, as they cannot reft; and as fuch combinations would be too large to pafs the capillary veffels of the aorta, and of the pulmonary artery, and of all the glands, and mult therc be perpetually diffevered, if they could be previoufly formed in the larger veffels.
4. If fimilar organized particles werc fecreted by the fexual glands of the male and alfo of the female, why do they not produce parts, or rudiments, of an cmbryon in the male or female refervoirs without a reciprocal commixture: This is anothcr unanfiverablc objection to Mr. Buffon's theory, but not to that above delivered; which latter fuppofes, that no organized particles are fecreted either by the glands of the male or fcmalc; but that the fibrils with formative appetencies are feccreted by the glands of the male,
and the molecules with formative aptitudes or propenfities are fecreted by thofe of the female; and that, when thefe combine, the organization commences.
5. If the whole of the embryon is fuppofed to be fynchronoufly produced, which is faid almoft to be vifible in the cicatricula of the egg even before incubation, how can this happen from a commixture of any kind of particles deduced from both the male and femalc parents, if thofe particles are previoufly detached from the various parts of their refpective bodies; fince no parts fimilar to the female organs can previoufly exift in the male, nor any of thofe of the malc organs previoufly exift in the female? This fynchronous production of all the parts of the embryon is fuppofed by M . Buffon, and militates againft his theory; and if it was true, would equally militate againft that above delivered; but from all the hiftories of the beginning and growing fetus given by anatomifts there are parts of fecondary formation, as well as parts of primary formation ; thus the head and fpine of the back are firft feen both in the oviparous and viviparous embryon, and afterwards the lungs, ribs, limbs, nails, hairs, and feathers, and lalt of all perhaps the glands which diftinguifh the fexes; as thefe are the laft, which afterwards arrive at their maturity.

This fecondary formation of parts is evinced in the long caudexes of the buds of trees, which
form a filament of the bark ; as from any part of this a new plumula or leaf, which is the lungs of the embryon bud, can be produced, when the upper part of a branch is lopped off, as fhewn in No. 9. 4. of this fection; and is further evinced in fome animals, as when a common earth-worm. is cut in halves, the tail part can produce a headpart, and the head-part can produce a tail-part; and laftly, it is evinced from the power, which crabs poffers of generating a new leg, when one of them is accidentally broken off. This power is likewife poffeffed by the human body, as in the production of new teeth, and then of a fecond fet, and there are fome inftances on record, that a third fet of teeth have been fabricated in the jaw-bones of age.

The power of formation of fecondary parts in the human fyftem is wonderfully fhewn by the following cafe, which is related by Mr. White in the Manchefter Memoirs, Vol. I. p. 338. "Some years ago I delivered a lady of rank of a fine boy, who had two thumbs on one hand, or rather one thumb double from the firf joint, the outer one being rather lefs than the inner, and each of them having a perfect nail. When he rvas about three years old, I was defired to take off the leffer one; which I did, but to my great aftonifhment it grew again, and along with it the nail. The family afterwards went to refide in London, when the father fhewed it to

Mr.

Mr. Bromfield; who faid, that he fuppofed $\mathrm{Mr}_{\text {r }}$. White, from fear of damaging the joint had not taken it wholly out, but that he would diffect it out entirely, and that then it would not return. He accordingly excented his plan, and turned the ball out of the focket. Notwithftanding this it grow again, a freth nail was formed, and the thumb remains in this frate."

Recapitulation.

X. On conficlering the reproduction of vegetable buds and feeds, of fome infects, and of more perfect animals, the modes of generation may be divided into folitary and fexual.

1. The firft confifts either in folitary lateral generation, as in the reproduction of the buds or: bulbs of vegctables, and of the young of the polypus, and of the hydra ftentorea, or of the folitary internal generation, as of the aphis, vinefretter, actinia, fea-anemone, tenia, tape-worm, and the volvox ; all which are properly a viviparous progeny, as they are not preceded by feeds, or fpawn, or eggs.

In thefe modes of reproduction I fuppofe, that fibrils with formative appetencies, and molecules with formative aptitudes or propenfities, produced by, or detached from, various effential parts of their refpective fyfems, float in the vegetable or infect blood. Thefe may be termed animalized particles
particles of primary combination, confifting of a folid particle adjoined to a peculiar appetency or propenfity; which latter may be effecmed its ethercal part, as magnetifin or clectricity may be added to iron or to other inanimate bodies.

There fibrils with fommative appetencies, and molecules with formative aptitudes or propenfities, cannot unite, or continue united, in the circulating blood, as they are not at reft; and would be too large to pafs the capillaries of the aorta, pulmonary artery, and glands, if they could be united in the larger veffels: they are therefore felected or feereted feparately by adapted glands, and when mixed together combine, and form the primary parts, of the new organization of an cmbryon.

Thofe fecreted from the long caudex of vegetable buds are depofited beneath the cuticle of the bark of trees, and there uniting form a new caudex gemme along the ficle of the parent one; which has the property of producing fecondary organizations from the new powers it has acquired, . io as to form a leaf or lungs either at its fummit in the axilla of the parent leaf, or in any other part of its length ; and allo to form radicles below, or from any amputated part.

This now caudex gemme is proved to commence its formation in feveral places at the fame time from the triple caudex of the bud of a tree, which has been twice fucceflively ingrafted, which
we have called a triple mule; but as the new vegetable confifts in general of a combination of parts derived from onc parent, it much morc accurately refembles that parent in its form, growth, and difeafes, than the progeny from fexual or feminal generation. The fame circumftances occur to the vegetables, which poffefs fhort and flat caudexes, which exift between the radicles and the root-leaves, as in the bulbs of tulips and onions; which might poffibly be ingrafted on each other like the buds of different trees, and form curious mule bulbs.

This lateral or folitary mode of propagation belongs likewife to the polypus of our ditches, and to the hydra ftentorea, and probably, to many other infects.
2. There is alfo a folitary internal mode of generation, which occurs in the viviparous productions of the aphis, which are known to proceed for cight or ninc fucceffive generations without the congrefs of fexes; but what is extraordinary, a congrefs of fexcs appears to be neceffary in their production of an oviparous progeny in the autumn for the prefervation of the fpecies during winter; whence it would feem, that folitary generation always produces a viviparous offfpring. For the more particular hiftory of this wonderful and important infect fee Phytologia, Sect. IX. and XIV. To which may be added, that a fimilar internal folitary mode of reproduction
duction probably obtains in the tenia, or tapeworm, of the inteftines, which afflicts variety of animals, and of the actinea, or fea-anemone, and of the volvor, as deferibed in the Syftema Nature of Linnens.

The effential clifference between the folitary lateral generation and the folitary internal generation feems to confift in this; that in the former there are many glands, which fecretc or produce the fibrils with formative appetencies; and many other glands, which fecrete or produce the molecules with formative aptitudes or propenfities; and that thefe numerous fecretions are mixed together and combine in one large receptacle beneath the cuticle of trees, and of fome infects, and there combining generate the organized particles, which conftitute the rudiment of the new embryon, producing many of the effential parts of it at the fame time; whereas in the latter, there probably exifis but one fet of glands, which fecretc the fibrils with formative appetencies; and another fet of glands which fecrete the molecules with formative propenfities; and that thefe primary particles are received and mingled together in a lefs extenfive refervoir ; as an univerfal exiftence of procreative glands, as in the long caudexes of vegetable budi, might have been inconvenient to locomotive animals. Thefe therefore feem to conftitute a link of the chain of nature between the lateral production of buds, and
the fexual hermaphrodites, which are next to be confidered.
3. The fexual mode of propagation may be divided firft into hermaphrodice or reciprosal fexual generation, as in the flowers of moft vegetableś, and in fone large infects, as in dewworms and fhell-fnails, and probably in many fimaller ones. Secondly into the fimpler fexual generation, which occurs in the larger animals.

The fexual modes of generation may alfo be divided into the feminal or oviparous modes, as the feeds of plants, the fpawn of fifh, and of infects, and the eggs of birds; and fecondly into the viviparous modes, as the fummit-bulbs of fome vegetables, as of polygonum viviparum, magical onions, and the cloves of garlic ; as thefe fummit bulbs fucceed the fexual congrefs of the male and female organs of fiowers; and are not buds, as their roots or caudexes do not pafs down the ftem of the plant into the ground; and are therefore a fexual viviparous progeny of vegetables: but the principal viviparous fexual productions are thofe of quadrupeds and of mankind.

Next to the internal folitary mode, of propagation nature fecms to have proluced the hermaphrodite fyftem of reproduction, as in moft flowers, and in frails and dew-worms; in thefe the mafeitine and feminine organs are generally external and totally feparated from each other,
and confift of glands, which fecrete the fibrils with formative appctencies, and the moleculds with formative propenfities from the fame mafs of blood.
Hence in vegetable productions the trees from feed, as apple trees, fometimes exactly refemble the parent tree, like the buds and bulbs, which are produced without fexual intereourfe; at: other times they do not exacily refemble the parent tree, which feems to be owing to the antherduft fometimes of the fame flower; or fomctimes of other flowers in its vicinity, caufing the impregnation of the figma. But in hermaphrodite infects, as the fhell-fnail, and dewworm, I have frequently obfcrved, that they impregnate each other reciprocally, though it is attended with much danger and inconvenienee to them; and I thence conclude, that they have not the power to impregnate themfelves by the conjunction of their own organs of reproduction, fince if that had happened, the progeny would probably, like the buids of trees, more exaclly have refembled the parent; and no inprovement of the fpecies, or no now fpecies from the fame genus, could have been procreated; which latter circumftance has probably much increaled the number both of animal and vegetable productions.
4. Laftly, the fimple mode of fexual generation differs from the reciprocal or hemmphrodite
X 3 mode fitute the mafculine and feminine organs, fecrete the fibrils with formative appetencies and the molecules with formative propenfities from different maffes of blood; as a double fyftem of organs might have been cumberfome, if they had exifted together in larger and more active animals: though it is not improbable, that all animals were originally hermaphrodite, according to the opinion of Plato in refpect to human kind, as would appear from the teats or nipples, as well as the pectoral glands, which are fill to be feen in men and in all male quadrupeds.

In this mode of propagation the fibrils with formative appetencies detached from fome or many effential parts of the male parent, or which were formed from the blood accordant to thofe effential parts, are fecreted by the male organ into an adapted refervoir; and the molecules with formative propenfities detached from fome or many effential parts of the female parent, or which are formed from the blood accordant to thofe effential parts, are feereted by the female organ into an adapted refervoir: and in this circumftance fecretion differs from nutrition; in the latter certain particles of the blood, which were not previoufly ufed in the fyftem, are embraced and become a folid part of the animal; in the former certain particles, whicl had previonfy been ufed in the fyftem, and detached from it,
are imbibed by adapted glands, and depofited in refervoirs, or detruded. Sce Sect. XXXVII. 3.

Finally when thefe are mixed together in the act of copulation, they embrace and coalefce, and form the effential parts of the new embryon; the production of which commences in more places than one; as the brain and heart, with fome nerves, arteries, veins, and abforbent veffels, are probably formed at the fame time, and almoft inftantaneoufly.

Thefe new fibrous combinations acquire new appetencies, and produce molecules by their vital activity with new aptitudes or propenfities; and thus gradually fabricate other fecondary parts either fynchronous or fucceflive ones, as the ribs, lungs, limbs, and finally the organs, which diftinguifh the fexes, with the general difference of the male and female form throughout the whole fyftem, according to the prevailing or preponderant activity or quantity of the fibrils with appetencies derived from the male, or the molecules with propenfities derived from the female. This idea differs from the theory of M . Buffon, which fuppofes the whole embryon to be formed at the fame time, or that the fexual organs are firft produced, as a centre of animalization; but the fecondary production of thefe organs is agrecable to all obfervations on the growing chick or fetus, and is ftrongly countenanced by the flow proX_{4} grefs grefs of thefe parts after birth, which are not complete till the maturity of the animal, which is termed its puberty.

The power, which the primary or effential parts of the embryon poffefs, of producing fccondary or lels effential parts, is analogous to the production of a new plumula or new radicles by the vegetable embryon, or cauder gemmæ mentioned in No. 8. 4. of this fection; and to the power with which crabs are furnifhed to produce a new limb, when one is broken off; and to that of earth-worms, which when cut in halves, can acquire a new head or a new tail; and to the power in a human infant of regenerating a fupermumerary thumb, to the production of a new fet of teeth, and the developement of the ferual glands at puberty. Sce No. 9.5. of this fection.
5. Some of thefe fexual reproductions confirt of feeds, or eggs, in which the effential parts of the vegetable or of the chiek are already formed, as may be feen in the corculum of many feeds, and in the cicatricula of an egg, as foon as it leaves the body of the hen before incubation. In this fiate the cmbryon docs not continue to grow, if expofed only to the ufual degree of the warmth and moifure of the atmofpliere, but may be long kept in its fiate of infenfible life; though it will foon ferment or putrefy, if it be deprived of life.

Otherwifo

Othervife thefe fexual productions confift of ipawn, which differs from eggs by the embryon not being included in a hard unyielding thell; fo that the receptacle diftends, as the fetus increafes in fize; which is feen in the fpaivn of fifh and frogs, and in the eggs of fpiders, fiails, and many other infects. From this difienfibility of the bag, which contains the embryons of fifh and infects, it feems more to refemble the uterus of quadrupeds than the eggs of birds; as in the former the receptacle increafes in fize along with the fetus, and fupplies the liquor of the amnios, as it is wanted; but differs by its not continuing in the matrix of the mother, till the exclufion of the young animal into the cold and dry atmofphere.
XI. 1. Finally we conclude, that as the inanimate particles or atoms of matter unite into cryftals of various forms by the various powers of attraction, which fome kinds of them poffers; and the various aptitudes to be attracted, which other kinds poffefs; which may be termed the cthereal properties of inanimate matter; fo the animated fibrils or molecules, which poffers appetencies to embrace, and propenfities to be embraced, which may be called their ethereal properties, coalefee, when they approach each other, and form organized bodies.

When this organization begins only in a fingle point, and only enlarges, as it acquires new kinds of appetencies, as explained in the former part of being commences; fuch as the animalcula, which are feen by the folar microfeope in variety of fluids, which have for a time flagnated; as in infufions of the fecds of plants, in the femen of animals, and of all other vegctable and animal recrements diffufed in water. Thefe microfcopic animals I fuppofe are produced by the ftagnation of the femen in the veficulæ feminales, and by the matter of the itch by ftagnation in its puftules, and by the feces by their fagnation in the inteftines; but I believe, that they do not exift in the blood, nor in fuids recently fecreted. There microfcopic animals conftitute the primordium vitæ, or firft order of animal life, and probably are not originally propagated, but fimply arife from the diffolution of all vegetable or animal mattcr.

This fpontancous production of microfcopic animals appears from their being difcovered in a few days in all folutions of decompofing vegetable and animal matters, as well after having been fubjected to the heat of boiling water as before. Thus Mr. Reaumur put fome boiling veal broth, and Mr. Baker put fome boiling hot mafhed potatocs into hot phials, which were clofed with glars-ftopples; and both of them in thrce days became as full of animalcula, as the fame materials put into other phials without being previoufly boilcd. Bakcr on the Microfcope.

It it probable that there exift microfcopie vegetable productions, as well as microfcopic animals, which may not have been attended to owing to the quiek evaporation of a drop of water in a mierofcope ; and that thefe are firft formed. fpontaneounly from the decompofing recrements of vegetable or animal bodies; and that they afterwards generate others rather more perfect than themfelves by lateral reproduction. From this kind of fpontaneous microfeopic vegetation, I fuppofe the green matter obferved by Dr. Prieftley, which gives up fo much vital air in the funfhine, originates; and that it afterwards generates a fueceeding progeny. As it is at firft flowly produced in water in any fituation, and afterwards is propagated with great rapidity ; and according to the obfervations of Senebier it is moft quickly produced in water in which vegetable or animal fubftances are in a fate of diffolution. Whence fome philofophers have lately fuppofed this green matter to be of animal origin, as it changes from a globular form to that of a thread; whieh has oeeafioned mueh inveftigation by Fontana, Ingenhouz, and Senebier. Journal de Phy= fique par Delametherie, T. 5.

In the fame manner the mucor, or mould, which grows on all decompofing vegetable and animal fubftanees, whieh are at reft in a proper degree of moifture and warmth, and whick thenee appears to have no parent, is probably firft pro-
duced duecd by the fpontancous appetencies and aptitudes or propenfities of the decompofed particles oforganic bodics; and probably thefenew combinations are at firlt microfcopic objects, which produce others by lateral or folitary generation, more and more perfect and of greater magnitude than themfelves, but which never acguire the organization neceffary for fexual reproduction. The fungi, which grow only on decaying parts of trees or other regetables, as well as the mufhrooms from horfe dung, which commence with fmall hair-like roots, and probably never produce feeds, feem to arifc in a fimilar manner from fpontaneons microfcopic organization, improved and magnified by fucceffive folitary gencrations.
2. The fccond kind of animal production, which is properly generation, commences in more points than one; as in the production of the long caudexcs of the buds of trees; and the animated fibrils and molecules firf combine, and form organized bodics; and there unitc again, where they are in contact; and thus the new cmbryon commences in many points at once; and the folitary mode of gencration is fecondary to the produetion of the finalleft microfcopic animals, which I luppofe commenec their cxiltence in one point onls, that is, by the production firft of a fingle living filament, which I formerly believed to be the general mode of propagation. This folitary mode of gencration occurs in the production
production of the buds of all vegctables; and perhaps the moft imperfect vegetables, as trufflcs, and other fungi, are only propagated by buds to this day, not having yet acquired fexual organs; as fecms alfo to uccur in fome imperfect animals, as the polypi, hydra, and tenia.
3. Other vegctables have acquired an hermaphrodite ftate, and poffefs external fexual organs, 2s in moft flowers; but both the malc and female organs acquire or produce their adapted fluids from the famc mals of blood, and thus refemble hermaphodite infects, as frails and worms.
4. Other vegetables have acquired a leparation of the fexes, either on the fame plant, as in the clafs of regetables termed by Linncus, monoecia, or on diffcrent plants, as in the clafs dioecia; the buds of which may properly be called male or female vegetables, and differ in fome degree in their form and colour, like malc and female animals; and in this they refemble the larger animals, as their fexual glands acquire or produce their prolific fluids from different maffes of blood; which is probably lefs cumberfome to the individual, than where both the fexual glands exift in one organized fyftem.

In all thefe vegetable and animal modes of reproduction, I fuppofe the new embryon to begin in miany points, and in complicated animals in many more points probably than in the more fimple ones; and finally, that as thefe new organ-
ized parts, or rudiments of the embryon, acquire new appctencies, and produce or find molecules with new propenfities, many fccondary parts are afterwards fabricated.
Thus it would appear, that all nature exifts in a flate of perpetual improvement by laws impreffed on the atoms of matter by the great cause of causes; and that the world may ftill be in its infancy, and continue to improve for ever and ever.
5. Concerning the fpontancous production of microfcopic animalculcs, I beg leave to repeat, firft, that I fuppofe the frmalleft oncs to be formed by the coalcfeence or cmbrace of the animal fibrils, which poffers appetencies, with the animal molecules, which pofféfs correfpondent propenfities; and that the animal fibrils and moleculcs are found in all vegetable and animal matter, as its organization becomes decompofed; if there cxifis along with it fufficient moifture and proper wamth.

Secondly, that this kind of fpontaneous reproduction refcmbles actual generation in its confifting of the coalefcence of animal fibrils with appetencies and animal molecules with correfpondent propenfities, that in the former they meet each other in the folution of animal matter, as it decompofes by fagnation; whercas in the latter thefe formative fibrils and molecules are fecreted by different glands from the blood of the parent.

Thirdly,

Thirdly, that the firft animalcules produce other ones by actual generation, but without fexes, like the buds of trees, and that as many generations may occur in a day, perhaps in an hour, I conceive, that they may gradually acquire new organizations, and improve by addition of new parts, as of fins, mouth, inteftines, and finally, perhaps, fexual organs of reproduction. Thus the feed of a tulip produces a fmall root the fize of a pea the fift fummer, with a fummit like a blade of grafs; this dies in autumn, having previounly produced a fucceffor larger than itfelf, and with a fronger leaf or fummit; in the autumn this likewife perifhes, and a third generation is produced, which is fill larger and more perfect; till the fifth generation from the leed becomes fo much more perfect as to produce fexual organs of reproduction, as the flower with its anthers and ftigma.

This curious analogy is not only fupported by the feedling buds of trees, which fuccced each other for ten or twelve generations, the parent buds dying in the autumn, before they becone fufficiently perfect to form the fexual organs of reproduction in their flowers, as occurs in appletrees; but is alfo obfervable in a complete infect, as in the aphis, which continues to propagate for nine generations from the egg without fex; and then becomes fo perfect as to form fexual organs, and to produce an oviparous progeny. Other

Other infects, as the moths and butterflies, undergo a great change of form, before they acquire the property of fexual reproduction; and probably innumerable other kinds of infects are fubjcet to the fame law.

This idea of the production and changes of form of microfcopic animalcules is countenaneed by the fmaller kinds never, I bulieve, having been feen in their cgg or infant ftate; and by fome of them being capable of being revived in a few hours by warmth and moifture after having been dry and motionlefs for months, as the infect named vorticella. And lafily, from the changeful forms, which fome of them affume, as that which is called proteus. See Baker and Adams on the Microfoope.

Thus as by the attractions, and aptitudes to be attracted, which exift in inanimate matter, various new bodies are produced from the decompofition of thofe, which previoufly exifted; fo by the appetencies to embrace, and the propenfities to be cinbraced, in animalized matter, various new animalculcs are formed from the decompofition of thofe, which previoufly exifted; owing in both cafes to the immutable laws impreffed both on inanimate and on organized matte: by the great finst cause.

Xil. 1. Cause and efrect may be comfidered as the progreffion, or fueceffive motions, of the parts of the great fyftem of Nature. The fiate
ftate of things at this moment is the effect of the ftate of things, which exifted in the preceding moment; and the caure of the ftate of things, which fhall exift in the next moment.

Thefe caufes and effects may be more eafily comprehended, if motion be confidered as a change of the figure of a group of bodies, as propofed in Sect. XIV. 2. 2. inafnuch as our ideas of vifible or tangible objects are more diftinct, than our abftracted ideas of their motions. Now the change of the configuration of the fyftem of nature at this moment muft be an effect of the preceding configuration, for a change of configuration cannot exift without a previous configuration; and the proximate caufe of every effect muft immediately prccede that effect. For example, a moving ivory ball could not proceed onwards, unlefs it had previoufly begun to proceed; or unlefs an impulfe had been previounly given it ; which previous motion or impulfe conftitutes a part of the laft fituation of things.
As the effects produced in this moment of time become caufes in the next, we may confider the progreffive motions of objects as a chain of caufes only; whofc firft link proceeded from the great Creator, and which have cxifted from the beginning of the created univerfe, and arc perpetually proceeding.
2. Thefe caules may be conveniently divided into two kinds, efficient and inert caufes, açcord-
vol. II.
Y
ing ing with the two kinds of cntity fuppofed to exift in the natural world, which may be termed matter and fpirit, as propofed in Sect. I. and further treated of in Sect. XIV. The cfficient caufes of motion, or new configuration, confift cither of the principle of general gravitation, which actuates the fun and planets; or of the principle of particular gravitation, as in elcetricity, magnetifm, heat; or of the principle of chemical affinity, as in combuftion, fermentation, combination; or of the principle of organic life, as in the contraction of vegetable and animal fibres. The inert caufes of motion, or now configuration, confift of the parts of matter, which are introduced within the fpheres of activity of the principles above defcribed. Thus, when an apple falls on the ground, the principle of gravitation is the cfficient caufc, and the matter of the apple-tree the inert caufc. If a bar of iron be approximated to a magnct, it may be termed the inert caufe of the motion, which brings thefe tivo bodies into contact; while the magnetic principle may be termed the cfficient caufe. In the fame manner the fibres, which conftitutc the retina, may be called the inert caule of thic motions of that organ in vifion, while the fenforial power may be termed the efficient citufe.
3. Another more common diftribution of the perpetual chain of caufes and cffects, which confitute the motions, or changing configurations,
of the natural world, is into active and paffive. Thus, if a ball in motion impinges againft another ball at refl, and communicates its motion to it, the former ball is faid to act, and the latter to be acted upon. In this fenfe of the words a magnet is faid to attract iron ; and the prick of a fpur to frimulate a horfe into exertion; fo that in this view of the works of nature all things may be faid either fimply to exift, or to exift as caufes, or to exift as effects ; that is, to exift either in an active or paffive ftate.

This diftribution of objects, and their motions, or changes of pofition, has been found fo convenient for the purpofes of common life, that on this foundation refts the whole conftruction or theory of language. The names of the things themfelves are termed by grammarians Nouns, and their modcs of exiftence are termed Verbs. The nouns are divided into fubftantives, which denote the principal things fpoken of; and into adjectives, which denote fome circumftances, or lefs kinds of things, belonging to the former. The verbs are divided into three kinds, fuch as denote the exiftence of things fimply, as, to be; or their exiftence in an active frate, as, to eat; or their exiftence in a paffive ftate, as, to be caten. Whence it appears, that all languages confift only of nouns and verbs, with their abbreviations for the greater cxpedition of communicating our thoughts; as explained in the ingenious work of Mr. Horne Tooke, who has unfolded by a fingle
flafh of light the whole theory of language, which had fo long lain buried beneath the learned lumber of the fchools. Diverfions of Purley. Johnfon. London.
4. A third divifion of caufes has been into proximate and remote; there have been much fpoken of by the writers on medieal fubjects, but without fufficient precifion. If to proximate and remote caufes we add proximate and remote effects, we fhall include four links of the perpetual chain of caufation; whieh will be more convenient for the difcuffion of many philofophical fubjects.

Thus if a particle of chyle be applied to the mouth of a lacteal veffel, it may be termed the remote eaufe of the motions of the fibres, which compofe the mouth of that lacteal veffel ; the fenforial power is the proximate caufe; the contraction of the fibres of the mouth of the veffel is the proximate effect; and their embraeing the partiele of chyle is the remote effect; and thefe four links of caufation conflitute abforption.

Thus when we attend to the rifing fun, fird the yellow rays of light ftimulate the fenforial power refiding in the extremities of the optic nerve, this is the remote caufe. 2. The fenforial power is cxcited into a fate of activity, this is the proximate caufe. 3. The fibrous extremities of the optie nerve are contracted, this is the proxmate effect. 4. A pleafurable or painful fenfation
tion is produced in confequence of the contraction of thefe fibres of the optic nerve, this is the remote effect; and thefe four links of the chain of caufation conftitute the fenfitive idea, or what is commonly termed the fenfation of the rifing fun.
5. Other caufes have been announced by medical writers under the names of caufa procatarctica, and caufa proegumina, and caufa fine quâ non. All which are links more or lefs diftant of the chain of remote caufes.

To thefe mult be added the final caufc, fo called by many authors, which means the motive, for the accomplifhment of which the preceding chain of caufes was put into action. The idea of a final caufe, therefore, includes that of a rational mind, which employs means to effect its ${ }^{*}$ purpofes; thus the defire of preferving himfelf from the pain of cold, which he has frequently experienced, induces the favage to confruct his hut; the fixing fakes into the ground for walls, branches of trees for rafters, and turf for a cover, are a ferics of fucceffive voluntary exertions; which are fo many means to produce a certain effect. This effect of preferving himfelf from cold, is termed the final caufe ; the conftruction of the hut is the remote effect; the action of the mufenlar fibecs of the man, is the proximate effect; the volition, or activity of defire to preferve himfelf from cold, is the proximate caule; and the pain of cold, which excited that clefire, is the remote caufe.

$$
\text { Y } 3 \quad \text { 6. This }
$$

6. This perpetual chain of caufes and effects, the firftlink of which is rivetted to the throne of GoD; divides itfelf into innumerable diverging branches, which, like the norves arifing from the brain, permeate the moft minute and molt remote extremities of the fyftem, diffifing motion and fenfation to the wholc. As cvery caufe is fuperior in power to the effect, which it has produced, fo our idea of the power of the Almighty Creator becomes more elevatcel and fublime, as we trace the operations of nature from canfe to caufe, climbing up the links of thefe chains of being, till we afcend to the Great Source of all things.

Hence the loodern difcoveries in chomiftry and in gcology, by having traced the caufes of the combinations of bodies to remoter origins, as well as thofe in aftronomy, which dignify the prefent agc, contributc to enlarge and amplify our ideas of the power of the Great Firft Caufe. And had thofe ancient philofophers, who contended that the world was formed from atoms, afcribed their combinations to certain immutable properties received from the hand of the Creator, fuch as general gravitation, chemical affinity, or animal appetency, inftead of afcribing them to a blind chance; the cloctrinc of atoms, as conftituting or compofing the material world by the variety of theif combinations, fo far from leading the mind to atheifm, would ftrengthen the demonftration - of the cxiftence of a Deity, as the firft caufe of all things;
ihings; becaufe the analogy refulting from our perpetual experience of caufe and effect would have thus been exemplified through univerfal nature.

The heavens declare the Glory of God, and the firmament Jherveth his handywork! One day telleth another, and one night certifieth another; they have neither Speech nor language, yet their voice is gone forth into all lands, and their words into the ends of the world. Manifold are thy works, O Lord! in wifclom haft thou made them all. Pfal. xix. cis.

S E C T. XL.

On the Ocular Spectra of Light and Colours, by Dr. R. W. Darwin, of Shrewfbury. Reprinted, by permiffion, from the Philofophical Tranfactions, Vol. LXXVI. p. 313.

Spectra of four kinds. 1. Altivity of the retina in vifion. 2. Specira from defict of Senfibility. 3. Speetra from excefs of fenfibility. 4. Of direet ocular Jpeetra. 5. Greater fimulus excites the retina into fpafmodic action. 6. Of reverfe ocular fpettra. 7. Greater fimulus excites the retina into various fucceffive fpafnodic aetions. 8. Into fixed \int pafmodic action. 9. Into temporary paraly/is. IO. Nivfellaneous remarks; 1. Direct and reverfe peelira at the fame time. A peciral balo. Rule to predetermine the colours of Spectra. 2. Variation of Spectra from extraneous light. 3. Variation of Speclra in number, figure, and remiflion. 4. Circulation of the blood in the cye is vijible. 5. A new way of marnifying objects. Conclufion.

When any one has long and attentively looked at a bright object, as at the fetting fun, on clofing his eyes, or removing them, an image, whicly refembles in form the object he was attending to, continues fome time to be vifible; this appearance in the eye we flall call the ocular feectrum of that object.

Thefe

Thefe ocular fpectra are of four kinds: ift, Such as are owing to a lefs fenfibility of a defined part of the retina; or Spectra from defect of Senfibility. 2d, Such as are owing to a greater lenfibility of a defined part of the retina; or Spectra from excefs of fenjibility. 3d, Such as refemble their object in its colour as well as form; which may be termed direct ocular Spectra. 4th, Such as are of a colour contrary to that of their object; which may be termed reverfe ocular spectra.

The laws of light have been moft fuccefffully explained by the great Newton, and the perception of vifible objects has been ably inveftigated by the ingenious Dr. Berkeley and M. Malebranche; but thefe minute phænomena of vifion have yet been thought reducible to no theory, though many philofophers have employed a confiderable degree of attention upon them : among thefe are Dr.' Jurin, at the end of Dr. Smith's Optics; M. AEpinus, in the Nov. Com. Petropol. V. 10.; M. Beguelin, in the Berlin Mémoires, V. II. 1771; VI. d'arcy, in the Hiftoire de l'Acad. des Scienc. 1765; M. de la Hire; and, lafily, the celcbrated M. de Buffon, in the Mémoires de l'Acad. des Scien, who has termed them accidental colours, as if fulyected to no eftablifhed laws, Ac. Par. 17 \&3. M. p. 215.

I muft here apprize the reader, that it is tery difficult for clifferent people to give the fame
names to various fhades of colours; whence, in the following pages, fomething muft be allowed, if on repeating the experiments the colours here mentioned fhould not accurately correfpond with his own names of them.

I. Activity of the Retina in Vifion.

From the fubfequent experiments it appears, that the retina is in an active not in a paffive ftate during the exiftence of thefe ocular fpectra; and it is thence to be concluded, that all vifion is owing to the activity of this organ.

1. Place a piece of red filk, about an inch in diameter, as in plate 1, at Sect. III. 1, on a fheet of white paper, in a ftrong light; look fteadily upon it from about the diffance of half a yard for a minute; then clofing your cyelids cover them with your hands, and a green fpectrum will be feen in your eyes, refembling in form the piece of red filk : after fome time, this fpectrum will difappear and Chortly reappear; and this alternately three or four times, if the experiment is well made, till at length it vanifhes entirely.
2. Place on a fheet of white paper a eircular pieee of blue filk, about four inehes in diameter, in the funfhine; cover the centre of this with a circular piece of yellow filk, about three inches in cliameter; and the centre of the yellow filk with a circle of pink filk, about two inches in diameter;
diameter; and the centre of the pink filk with a circle of green filk, about one inch in diameter; and the centre of this with a circle of indigo, about half an inch in diameter; make a fmall fpeck with ink in the very centre of the whole, as in plate 3, at Sect. III. 3. 6.; look ftendily for a minute on this central fpot, and then clofing your eyes, and applying your hand at about an inch diftance before them, fo as to prevent too much or too little light from paffing through the eyelids, you will fee the moft beautiful circles of colours that imagination can conceive, which are moft refembled by the colours occafioned by pouring a drop or two of oil on a fill lake in a bright day; but thefe circular irifes of colours are not only different from the colours of the filks above mentioned, but are at the fame time perpetwally changing as long as they exift.
3. When any one in the dark preffes either corner of his eye with his finger, and turns his eye away from his finger, he will fee a circle of colours like thofe in a peacock's tail: and a fudden flath of light is excited in the eye by a ftroke on it. (Nivewton's Opt. Q. 16.)
4. When any one turns round rapidly on one foot, till he becomes dizzy, and falls upon the ground, the fpectra of the ambient objects continue to prefent themfelves in rotation, or appear to librate, and he feems to behold them for come time ftill in motion.

From

From all thefe experiments it appears, that the fpectra in the 'eye are not owing to the meehanical impulfe of light impreffed on the retina, nor to its chemical combination with that organ, nor to the abforption and emiffion of light, as is obferved in many bodies; for in all thefe eafes the fpectra muft either remain uniformly, or gradually diminifh; and neither their alternate prefence and evancfeence as in the firft experiment, nor the perpetual changes of their colours as in the fecond, nor the flafh of light or colours in the preffed eye as in the third, nor the rotation or libration of the fpectra as in the fourth, could exift.

It is not abfurd to conceive, that the retina may be fiimulated into motion, as well as the red and white mufeles which form our limbs and veffels; fince it confifts of fibres, like thofe, intermixed with its medullary fubflance. To evince this fructure, the retina of an ox's eye was fufpended in a glars of warm water, and forcibly torn in a few places; the edges of thefe parts appeared jagged and hairy, and did not contract, and become fmooth like fimple mueus, when it is diftended till it breaks; which fhews that it confifts of fibres: and its fibrous conftruction became ftill more diftinct to the fight, by adding fome cauftic alkali to the water, as the adhering mueus was firft eroded, and the hair-like fibres remained floating in the veffel. Nor docs the
degree of tranfparency of the refina invalidate the evidence of its fibrous firucture, fince Leeuwenhoek has fhewn that the cryftalline humour itfelf confifts of fibres. (Arcana Nature, Vol. I: p. 70.)

Hence it appears, that as the mufcles have larger fibres intermixed with a fmaller quantity of nervous medulla, the organ of vifion has a greater quantity of nervous medulla intermixed with fmaller fibres; and it is probable that the locomotive mufcles, as well as the vafcular ones, of microfopic animals have much greater tenuity than there of the retina.

And befides the fimilar laws, which will be Shewn in this paper to govern alike the actions of the retina and of the mufcles, there are many other analogies which exift between them. They are both originally excited into action by irritations, both act nearly in the fame quantity of time, are alike ftrengthened or fatigued by exertion, are alike painful if exeited into action when they are in an inflamed ftate, are alike liable to paralyfis, and to the torpor of old age.

II. Of spectra from defect of sensiBILITY.

The retina is not fo eafily' excited into action by lefs irritution after having been lately fubjected to greater.

1. Wurn any one paffes from the bright daylight
light into a darkened room, the irifes of his eyes expand themfelves to their utmoft extent in a few fuconds of time; but it is very long before the optie nerve, after having been fimmuated by the greater light of the day, becomes fenfible of the lefs degree of it in the room; and, if the room is not too obfeure, the irifes will again eontract themfelves in fome degree, as the ferifibility of the retina returns.
2. Place about half an inclı fquare of white paper on a black hat, and looking fteadily on the centre of it for a minute, remove your eyes to "a fheet of white paper; and after a fecond or two a dark fquare will be feen on the white paper, which will continue fome time. A fimilar dark fquare will be feen in the elofed eye, if light be admitted through the cyelids.

So after looking at any luminous object of a fmall fize, as at the fun, for a fhort time, fo as not much to fatigue the cycs; this part of the retina becomes lefs fenfible to fimaller quantities of light; hence, when the eyes are turned on other lefs luminous parts of the 1 ky , a dark f_{p} ot is feen refembling tie flape of the fun, or other luminous object which we laft beheld. This is the fource of one kind of the dark-coloured mufces volitantes. If this dark fpot lics above the centre of the cye, we turn our cyes that way, expecting to bring it into the centre of the eye, that we may view it more diftinctly; and in this cale the
dark fpectrum feems to move upwards. If the dark' fpectrum is found beneath the centre of the eye, we purfue it from the fame motive, and it feems to move downwards. This has given rife to various conjectures of fomething floating in the aqueous humours of the eyes; but whoever, in attending to thefe fpots, keeps his eyes unmoved by looking fieadily at the corner of a cloud, at the fame time that he obferves the dark fpectra, will be thoroughly convinced, that they have no motion but what is given to them by the movement of our eyes in purfuit of them. Sometimes the form of the fpectrum, when it has been received from a circular luminous body, will become oblong; and fometimes it will be divided into two circular fpectra, which is not owing to our changing the angle made by the two optie axifes, according to the diftance of the clouds or other bodies to which the fpectrum is fuppofed to be contiguous, but to other caufes mentioned in No. X. 3. of this fection. The apparent fize of it will alfo be variable according to its fuppofed diftance.

As thefe fpectra are more eafily obfervable when our eyes are a little weakened by fatigue, it has frequently happened, that people of delicate conflitutions have been much alarmed at them, fearing a beginning decay of their fight, and have thence fallen into the hands of ignorant oculifts; but I believe they never are a prelude
to any other difeafe of the cye, and that it is from habit alone, and our want of attention to them, that we do not fee them on all objects every hour of our lives. But as the nerves of very weak people lofe their fenfibility, in the fame manner as their mufeles lofe their activity, by a fmall time of exertion, it frequently happens, that fiek people in the extreme debility of fevers are perpetually. employed in pieking fomething from the bed-elothes, oecafioned by their miftaking the appearance of thefe mufce wolitantes in their cyes. Benvenuto Celini, an Italian artift, a man of ftrong abilitics, relates, that having paffed the whole night on a diftant mountain with fome eompanions and a conjurer, and performed many eeremonies to raife the devil, on their return in the morning to Rome, and looking up when the fun began to rife, they faw numerous devils run on the tops of the houfes, as they paffed along; fo mueh were the fpectra of their weakened cyes magnified by fear, and made fubfervient to the purpofes of fraud or fuperftition. (Life of Ben. Celini.)
3. Plaçe a fquare inch of white paper on a large picee of ftraw-eoloured filk; look fteadily fome time on the white paper, and then move the centre of your eyes on the filk, and a fpectrum of the form of the paper will appear on the filk, of a deeper yellow than the other part of it : for the central part of the retina, having been fome time cxpofed to the ftimulus of a greater quantity of white

> light,
light, is become lefs fenfible to a fmaller quantity of it, and therefore fees only the yellow rays in that part of the ftrav-coloured filk.

Facts fimilar to thefe are obfervable in other parts of our fyficm: thus, if one hand be made warm, and the other expofed to the cold, and then both of them immerfed in fubtepid water, the water is perecived warm to one hand, and cold to the other; and we are not able to hear weak founds for fome time after we have been, expofed to loud ones; and we feel a chillinefs on coming into an atmofphere of temperate warmth, after having been fome time confined in a very warm room: and hence the ftomach, and other organs of digeftion, of thofe who have been habituated to the greater ftimulus of fpirituous liquor, are not excited into their due action by the lefs ftimulus of common food alone; of which the immediate confequence is indigeftion and hypochondriacifin.
III. Of spectra from excess of sensibiLITY.

The retina is more eafily exciled into aciion by greater irrilation afier having leen lately fubjected to lefs.

1. If the eyes arc elofed, and covered perfectly with a hat, for a minute or two, in a briglit day;

YOL. II.
2
on
on removing the hat a red or erimfon light is feen through the eyelids. In this experiment the retina, after being fome time kept in the dark, becomes fo fenfible to a fmall quantity of light, as to perecive diftinctly the greater quantity of red rays than of others which pafs through the cyelids. A fimilar coloured light is feen to pals through the edges of the fingers, when the open hand is oppofed to the flame of a candle.
2. If you look for fome minutes fieadily on a window in the beginning of the evening twilight, or in a dark day, and then move your eyes a little, fo that thofe parts of the retina, on which the dark frame-work of the window was delineated, may now fall on the glafs part of it, many luminous lines, reprefenting the fraine-work, will appear to lie acrofs the glafs panes: for thofe parts of the retina, which were before leaft ftimulated by the dark frame-work, are now more fenfible to light than the other parts of the retina which were expofed to the more luminous parts of the window.
3. Make with ink on white paper a very black fpot, about half an ineh in diameter, with a tail about an inch in length, fo as to reprefent a tadpole, as in plate 2, at Seet. III. 8. 3.; look fleadily for a minute on this fpot, and, on moring the eye a little, the figure of the tadpole will be fecin on the white part of the paper, which figure of the tadpole will appear whiter or more luminous

Juminous than the other parts of the white paper; for the part of the retina on which the tadpole was dclineated, is now more fenfible to light than the other parts of it, which were expofed to the white paper. This experiment is mentioned by Dr. Irwin, but is not by him afcribed to the true caufe, namely, the greater fenfibility of that part of the retina which has been expofed to the black fpot, than of the other parts which had received the white field of paper, which is put beyond a doubt by the next experiment.
4. On clofing the eyes after viewing the black fpot on the white paper, as in the foregoing experiment, a red fpot is feen of the form of the black fpot: for that part of the retina, on which the black fpot was delineated, being now more fenfible to light than the other parts of it, which were expofed to the white paper, is capable of perceiving the red rays which penetrate the eyelids. If this experiment be made by the light of a tallow candle, the fpot will be yellow inftead of red; for tallow candles abound much with yellow light, which paffes in greater quantity and force through the eyelids than blue light; hence the difficulty of diftinguifhing blue and green by this kind of candle light. The colour of the fpectrum may poffibly vary in the daylight, according to the different colour of the méridian or the morning or evening light.
M. Beguelin, in the Berlin Memoires, V. If.

1771, obferves, that, when he held a book fo that the fun fhone upon his half-elofed eyclids, the black letters, which he had long infpected, became red, which muft have been thus occafioned. Thofe parts of the retina which had received for fome time the black letters, were fo much more fenfible than thofe parts whieh had been oppofed to the white paper, that to the former the red light, which paffed through the eyelids, was perceptible. There is a fimilar flory told, I think, in M. de Voltaire's Hiftorical Works, of a Duke of Tufeany, who was playing at dice with the general of a foreign army, and, believing he faw bloody fpots upon the dice, porténded dreadful events, and retired in confufion. The obferver, after looking for a minute on the black fpots of a die, and carclefsly clofing his eyes, on a bright day, would fee the image of a die with red fpots upon it, as above explained.
5. On emerging from a dark eavern, where we have long continued, the light of a bright day beeomes intolerable to the eye for a confiderable time, owing to the excefs of fenfibility exifting in the cye, after having been long expofed to little or no ftimulus. This oceafions us immediately to contract the iris to its fimalleft aperture, which beeomes again gradually dilated, as the retina becomes aecuftomed to the greater fimulus of the daylight.

The twinkling of a bright fiar, or of a diftant candle
candle in the night, is perhaps owing to the fame caufc. While we continue to look upon thefe luminous objects, their central parts gradually appear palex, owing to the decreafing fenfibility of the part of the retina expofed to their light; whilft, at the fame time, by the unfteadinefs of the eye, the edges of them are perpetually falling on parts of the retina that were juft before expofed to the darknefs of the night, and therefore tenfold more fenfible to light than the part on which the ftar or candle had been for fome time delineated. This pains the eye in a fimilar manner as when we come fuddenly from a dark room into bright day-light, and gives the appearance of bright fcintillations. Hence the ftars twinkle moft when the night is darkeft, and do not tivink le through telefeopes, as obferved by Mufchenbroeck ; and it will afterwards be feen why this twinkling is fometimes of different colours when the object is very bright, as Mr. Melvill obferved in looking at Sirius. For the opinions of others on this fubject, fee Di_{i}. Prieftley's valuable Hiftory of Light and Colours, p. 494.

Many facts obfervable in the animal fyftem are fimilar to thefe; as the hot glow sccafioned by the ufual warmth of the air, or our cluhes, on coming out of a cold bath; the pain of tice? fingers on approaching the fire after havine: handled finow; and the inflamed heels frows walking in fnow. Hence thofe who have beint
expofed to much cold have died on being brought to a fire, or their limbs have become fo much inflamed as to mortify. Hence much food or wine given fuddenly to thofe who have almoft perifhed by hunger has deftroyed them; for all the organs of the famifhed body are now become fo much more irritable to the ftimulus of food and wine, which they have long been deprived of, that inflammation is excited, which terminates in gangrene or fever.

IV. Of direct ocular spectra.

A quantity of fimulus fomewhat greater than natural excites the retina into fpafmodic action? which ceafes in a few Seconds.

A certain duration and encrgy of the fimuIus of light and colours excites the perfect action of the retina in vifion ; for very quick motions are imperceptible to us, as well as very flow ones, as the whirling of a top, or the fhadow on a fundial. So perfect darknefs does not affect the eye at all; and cxcefs of light produces pain, not rifion.

1. When a fire-coal is whirled round in the dark, a lucid circle remains a confiderable time in the eye; and that with fo much vivacity of light, that it is miftaken for a continuance of the irritation of the oliject. In the fame manner, when a fiery me-

teor fhoots acrofs the night, it appears to leave a long lucid train behind it, part of which, and perhaps fometimes the whole, is owing to the continuance of the action of the retina after having been thus vividly excited. This is beautifully: illuftrated by the following experiment: fix a paper fail, three or four inches in diameter, and made like that of a fmoke jack, in a tube of pafteboard; on looking through the tube at a diffant profpect, fome disjointed parts of it will be feen through the narrow intervals between the fails; but as the fly begins to revolve, thefe intervals appear larger; and when it revolves quicker, the whole profpect is feen quite as diftinct as if nothing intervened, though lefs luminous.
2. Look through a dark tube, about half a yard long, at the area of a yellow circle of half an inch diameter, lying upon a blue area of double that diameter, for half a minute ; and on clofing your eyes the colours of the fpectrum will appear fimilar to the two areas, as in fig, 3 .; but if the eye is kept too long upon them, the colours of the fpectrum will be the reverfe of thofe upon the paper, that is, the internal circle will become blue, and the external area ycllow; hence fome attention is required in making this experiment.
3. Place the bright flame of a fpermaceti candle before a black object in the night; look ftca-
dily at it for a fhort time, till it is obferved to become fomewhat paler ; and on elofing the eyes, and covering them earefuliy, but not fo as to compreff them, the image of the biazing candie will eontintie difinctly to be vifible.

Look fieadily, for a fhort time, at a window in a dark day, as in Exp. 2. Sect. Ilf. and then clofing your eyes, and covering them with your hands, an exact delineation of the window remains for fome time vifible in the eye. This experiment requires a little practice to make it fueceed well; finee, if the eyes are fatigued by looking too long on the window, or the day be too bright, the luminous parts of the window will appear dark in the fectrum, and the dark parts of the frame-work will appear luminous, as in Exp. 2. Scet. III. And it is even diffieult for many, who firft try this experiment, to perecive the fpectrum at all; for any hurry of mind, or cren ton great attention to the fpectrum itfelf, will difappoint them, till they have had a little experience in attending to fueh fmall fenfations.

The feectra deferibed in this fection, termed dircet oeular fpectra, are produced without mueh fatigue of the eye ; the irritation of the luminous objcet being foon withdrawn, or its quantity of light being not fo great as to produce any degree of uncafincts in the organ of vifion ; which diftinguifhes them from the next clafs of ocular fpectra, which are the confequence of fatigue.

Thefe direct feectra are beft obferved in fuch circumftances that no light, but what comes from the object, can fall upon the eye; as in looking through a tabe, of half a yard long, and an inch wide, at a yellow paper on the fide of a room, the direct fpectrum was eafily produced on clofing the eye without taking it from the tube; but if the latcral light is admitted through the eyelids, or by throwing the fpectrum on white paper, it becomes a reverfe fipectrum, as will be explaincd below.

The other fenfes alfo retain for a time the impreffions that have been madc upon them, or the actions they have becn excited into. So if a hard body is preffed upon the palm of the hand, as is practifed in trieks of logerdemain, it is not cafy to diftinguifh for a féw feconds whether it remains or is removed; and taftes continue long to exift vividly in the mouth, as the fmoke of tobaceo, or the tafte of gentian, after the fapid material is withdrawn.
V. A quantity of fimulus fomerwhat greater than the laft mentioned excites the retina into fpafinodic action, which cenfes and recurs alternately.

1. On looking for a time on the fetting fun, fo as not greatly to fatigue the fight, a yellow fpectrim is feèn when the cyes are elofed and covered, which continues for a time, and then difappears vanifhes. This yellow fpectrum of the fun when the cyclids are opened becomes blue; and if it is made to fall on the green grafs, or on other coloured objects, it varies its own colour by an intermixture of theirs, as will be explained in another place.
2. Place a lighted fpermaceti candle in the night about one foot from your eyc, and look fteadily on the centre of the flame, fill your eye becomes much more fatigued than in Scet. IV. Exp. 3.; and on clofing your eyes a reddifh fpectrum will be perceived, which will ceafe and return alternately.

The action of vomiting in like manner ccafes, and is renewed by intervals, although the cmetic drug is thrown up with the firft effort: fo afterpains continue fome time after parturition; and the alternate pulfations of the heart of a viper are rencwed for fome time after it is cleared from its blood.

VI. Of reverse ocuear spectra.

The retina, afier having been excited into action by a fimulus fomewhat greater than the laft mentioned, falls into oppofite fpafmodic action.

The actions of cvery part of animal bodies may be advantagcounly compared with each other.

This ftrict analogy contributes much to the inveftigation of truth; while thofe loofer analogies, which compare the phenomena of animal life with thofe of chemiftry or mechanics, only ferve to minlead our inquiries.

When any of our larger mufcles have been in long or in violent action, and their antagonifts have been at the fame time extended, as foon as the action of the former ceafes, the limb is ftretched the contrary way for our eafe, and a pandiculation or yawning takes place.

By the following obfervations it appears, that a fimilar circumftance obtains in the organ of vifion; after it has been fatigued by one kind of action, it fpontaneounly falls into the oppofite kind.

1. Place a piece of coloured filk, about an inch in diamcter, on a fheet of white paper, about half a yard from your eyes; look fteadily upon it for a minute; then remove your eyes upon another part of the white paper, and a fpectrum will be feen of the form of the filk thus infpected, but of a colour oppofite to it. A fpectrum nearly fimilar will appear if the eyes are clofed, and the eyelids fhaded by approaching the hand near them, fo as to permit fome, but to preyent too much light falling on them.

Red filk produced a green fpectrum.
Green produced a red one.

Orange produced blue. Bluc produced orange. Yellow produced violet. Violet produced yellow.
That in thefe experiments the colours of the ipeetra are the reverfe of the colours which oceafroned them, may be foen by examining the third figure in Sir Ifaac Newton's Optics, L. II. p. I. where thofc thin laminæ of air, which reflected yellow, tranfinitted violet; thofe whieh reflected red, tranfmitted a blue green; and fo of the reff, agrecing with the experiments above related.
2. Thefé reverfe fpectra are fimilar to a colour, formed by a combination of all the primary colours except that with which the eye has becnfatigued in making the experiment : thus the reverfe fpectrum of red muft be fuch a green as would be produced by a combination of all the other prifmatie colours. To evinec this fact the following fatisfactory experiment was made. The prifmatic colours were laid on a circular pafteboard whecl, about four inches in diameter, in the proportions defcribed in Dr. Prieftley's Hiftory of Light and Colours, pl. 12. fig. S3. except that the red compartment was entirely left out, and the others proportionably extended fo as to complete the cirele. Then, as the orange is a mixture of red and yellow, and as the violet is a misture of red and indigo, it became neceffary to
put yeilow on the wheel inftead of orange, and indigo inftead of violet, that the experiment might more exactly quadrate with the theory it was defigned to effablifh or confute; becaufe in gaining a green fpectrum from a red object, the eye is fuppofed to have become infenfible to red light. This wheel, by means of an axis, was made to whirl like a top; and on its being put in motion, a green colour was produced, corresponding with great exactnefs to the reverfe fpectrum of red.
3. In contemplating any one of thefe reverfa fpectra in the clofed and covered cye, it difappears and re-appears feveral times fucceffively, till at length it entirely vanifhes, like the direct fpectra in Sect. V.; but with this additional circumftance, that when the fpectrum becomes faint or evanefcent, it is inftantly revived by removing the hand from before the eyelids, fo as to adnit more light: becaufe then not only the fatigued part of the retina is inclined fpontaneoufly to fall into motions of a contrary direction, but being fill fenfible to all other rays of light, except that with which it was lately fatigucd, is by thefe rays at the fame time fimulated into thofe motions which form the reverfe fpectrum.

From thefe experiments there is reafon to conclude, that the fatigued part of the retina throws itfelf into a contrary mode of action, like ofcitation or pandiculation, as foon as the ftimulus into action by any other colours at the fame time; except the colour with which it has been fatigued.
VII. The retina after having been excited into action by a Jimulus fomerohat greater than the lafs mentioned falls into various fucceflve spafmodic actions.

1. On looking at the meridian fun as long as the eyes can well bear its brightnefs, the difk firft becomes palc, with a luminous crefcent, which feems to librate from one edge of it to the other, owing to the unfteadinefs of the cye; then the whole phafis of the fun becomes blue, furrounded with a white halo; and on clofing the eyes, and covering them with the hands, a yellow fpectrum is feen, which in a little time changes into a blue one.
M. de la Hire obferved, after looking at the bright fun, that the impreflion in his cye firft affumed a yellow appearance, and then green, and then blue; and wifhes to aferibe thefe appearances to fome affection of the nerves. (Porterfield on the Eye, Vol. I. p. 343.)
2. After looking fteadily on about an inch fquare of pink filk, placed on white paper, in a
bright funfhine, at the difance of a foot from my cyes, and clofing and covering my eye-lids, the fpectrum of the filk was at firft a dark green, and the fpectrum of the white paper became of a pink. The fpectra then both difappeared; and then the internal fpectrum was bluc; and then, after a fecond difappearance, became yellow, and lafly pink, whilf the fpcetrum of the field varied into red and green.

Thefe fucceffions of different coloured fpectra were not cxactly the fame in the differcnt experiments, though obferved, as near as could be, with the famc quantity of light, and other fimilar circumftances; owing, I fuppofe, to trying too many experiments at a time; fo that. the eye was not quite free from the fpectra of the colours which were previoufly attended to.

The alternate exertions of the retina in the preceding fection refembled the ofcitation or pandiculation of the mufcles, as they were performed in dircctions contrary to each other, and were the confequence of fatigue rather than of pain. And in this they differ from the fucceffive diffimilar exertions of the retina, mentioned in this fcetion, which refenble in miniature the more violent agitations of the limbs in convulfive difcafes, as cpilcpfy, chorea S. Viti, and opifhotonos; all which difeafcs are perhaps, at firft, the confequence of pain, and have their periods afterwards eftablifhed by habit.
VIII. The
VIII. The retina, after having been excited into aetion by a fimulhus fomewhat greater than the laft mentioned, falls into a fixed Jpafmodic acTion, wehich continues for fome days.

1. After having looked long at the meridian fun, in making fome of the preceding experiments, till the difk faded into a pale blue, I frequcntly obferved a bright blue fpectrum of the fun on other objects all the next and the fucceeding day, which confantly occurred when I attended to it, and frequently when I did not pretiounly attend to it. When I clofed and covered my eyes, this appeared of a dull yeilow ; and at other times mixed with the colours of other objects on which it was thrown. It may be imagincd, that this part of the retina was become infenfible to white light, and thenee a bluifh fpeetrum became vifible on all luminous objects; but as a yellowifh fpectrum was alfo feen in the clofed and covered cye, there can remain no doubt of this being the fpectrum of the fun. A fimilar appearance was obferved by M. Apinus, which he acknowledges he could give no account of. (Nov. Com. Petrop. V. 10. p. 2. and 6.)

The loeked jaw, and fome cataleptie fpafms, are refembled by this phenomenon; and from hence.
hence we may learn the danger to the eye by infecting very luminous objects too long a time.
IX. A quantity of fimulus greater than the preceding induces a temporary paralyes of the organi of vifion.

1. Place a circular piece of bright red filk, about half an inch in diameter, on the middle of a fheet of white paper; lay them on the floor in a bright funfhine, and fixing your eyes fteadily on the centre of the red circle, for three or four minutes, at the diftance of four or fix feet from the object, the red filk will gradually become paler, and finally ceale to appear red at all.
2. Similar to thefe are many other animal facts ; as purges, opiates, and even poifons, and contagious matter, ceafe to flimulate our fyftem; after we have been habituated to their ufe. So fome people fleep undifturbed by a clock, or even by a forge hammer in their neighbourhood: and not only continued irritations, but violent exertions of any kind, are fucceeded by temporary paralyfis. The arm drops down after violent action, and continues for a time ufelefs; and it is probable, that thofe who have perifhed fuddenly in fwimming, or in fcating on the ice, have owed their dcaths to the paralyfis, or extreme fatiguc, which fucceeds cvery violent and continued exertion.
[^2]
X. Miscellaneous Rematis.

Thene were fome cireumftances oceurred in making thefe experiments, which were liable to alter the refults of them, and whieh I fhall here mention for the affiftance of others, who may wifh to repeat them.

1. Of dired and inverfe Spectra exifing at the fame time; of reciprocal direct spectra; of a combination of direct and inverve fpectra; of a spectral halo; rules to pre-determine the colours of spectra.
a. When an area, about fix inches fquare, of bright pink Indian paper, had been viewed on an area, about a foot fquare, of white writing paper, the internal fpectrum in the elofed eye was green, being the reverfe fpectrum of the pink paper ; and the external fpectrum was pink, being the direct fpectrum of the pink paper. The fame cireumftance happened when the internal area was white, and external one pink; that is, the internal fpectrum was pink, and the external one green. All the fame appearances occurred when the pink paper was laid on a black hat.
b. When fix inches fquare of deep violet polifhed paper were viewed on a foot fquare of white
white writing paper, the internal fpectrum were yellow, being the reverfe fpectrum of the violet paper, and the external one was violet, being the direct fpectrum of the violet paper.
c. When fix inches fquare of pink paper were viewed on a foot fquare of blue paper, the internal fipectrum was blue, and the external fpectrum was pink; that is, the internal one was the. direct fpectrum of the external object, and the external one was the direct fpectrum of the internal object, inftead of their being each the reverfe fpectrum of the objects they belonged to.
d. When fix inches fquare of blue paper were viewed on a foot fquare of yellow paper, the interior fpectrum beeame a brilliant yellow, and the exterior one a brilliant blue. The vivacity of the fpectra was owing to their being excited both by the ftimulus of the interior and exterior objects; fo that the interior yellow fpectrum was both the reverfe fectrum of the blue paper, and the direct one of the yellow paper; and the exterior blue fpectrum was both the reverfe fpectrum of the yellow paper, and the direct one of the blue paper.
e. When the internal area was only a fquare half-inch of red paper, laid on a fquare foot of dark violet paper, the internal fpectrum was green, with a reddifh-blue halo. When the red internal paper was two inches fquare, the internal fpectrum was a deeper green, and the
external one redder. When the internal paper was fix inches fquare, the fipectrum of it became blue, and the feectrum of the external paper was' red.
f. When a fquare half-inch of blue paper was laid on a fix-inch fquarc of yellow paper, the fpectrum of the central paper in the clofed eye was ycllow, incircled with a blue halo. On looking long on the meridian fun, the difk fades into a palc blue furrounded with a whitifh halo.

Thefe circumftances, though they very much perplexed the experiments till they were inveftigated, admit of a fatisfactory explanation; for while the rays from the bright internal object in exp. a. fall with their full force on the centre of the retina, and, by fatiguing that part of it, induce the reverfe feectrum, many feattered rays, from the fame internal pink paper, fall on the more external parts of the retina, but not in fuch quantity as to occafion much fatigue, and hence induce the direet fipectrum of the pink colour in thote parts of the eye. The fame reverfe and direct fipectra oceur from the violet paper in exp. $b .:$ and in exp. c. the fcattered rays from the central pink paper produce a direct fpectrum of this colour on the external parts of the eye, while the foattered rays from the external blue paper produce a direct fpectrun of that colour on the central part of the eye, inftead of thefe parts of the retina falling reciprocally into their reverfe
reverfe fpectra. In exp. \boldsymbol{d}. the colours being the reverfe of eaeh other, the feattered rays from the exterior object falling on the eentral parts of the eye, and there exeiting their direct fpectrum, at the fame time that the retina was excited into a reverfe fpectrum by the central object, and this direct and reverfe fpectrum being of fimilar eolour, the fuperior brilliancy of this fpectrum was produced. In exp. e. the effect of various quantities of ftimulus on the retina, from the different refpective fizes of the internal and external areas, induced a fpectrum of the internal area in the centre of the eye, combined of the reverfe fpectrum of that internal, area and the direct one of the external area, in various fhades of eolour, from a pale green to a deep blue, with fimilar ehanges in the fpectrum of the external area. For the fame reafons, when an internal bright object was finall, as in exp. f. inftead of the whole of the fpectrum of the external object being reverfe to the eolour of the internal object, only a kind of halo, or radiation of colour, fimilar to that of the internal object, was fpread a little way on the external fpectrum. For this internal blue area being fo fmall, the fcattered rays from it cxtended but a little way on the image of the external area of yellow paper, and could thercfore produce only a blue halo round the yellow fpectrum in the centre.

If any one fhould fufpect that the fattered rays

$$
\text { A a } 3 \quad \text { from }
$$

from the exterior coloured object do not intermix with the rays from the interior coloured ohject, and thus affect the central part of the eye, let him look through an opake tube, about two feet in length, and an inch in diameter, at a coloured wall of a room with one cyc, and with the other cye naked; and he will find, that by fhutting out the lateral light, the area of the wall feen through a tube appears as if illuminated by the funfline, compared with the other parts of it; from whence arifes the advantage of looking through a dark tube at diftant paintings.

Hence we may fafely deduce the following rules to determine before-hand the colours of all fpectra. 1. The direct fpectrum without any lateral light is an evanefcent reprefentation of its object in the unfatigued cye. 2. With fome lateral light it becomes of a colour combined of the direct fecetrum of the central object, and of the circumjacent objects, in proportion to their refpective quantity and brilliancy. 3. The reverfe fpectrum without lateral light is a reprefentation in the fatigued eye of the form of its objects, with fuch a colour as would be produced by all the primary colours, except that of the object. 4. With lateral light the colour is compounded of the reverfe fpectrum of the central object, and the direct fpectrum of the circumjacent objects, in proportion to their refpective quantity and brilliancy.
2. Vintiations
2. Variation and vivacity of the fpectra occafioned by extraneous light.

The reverfe fpectrum, as has been before explained, is fimilar to a colour, formed by a combination of all the primary colours, except that with which the eye has been fatigued in making the experiment: fo the reverfe fpectrum of red is fueh a.green as would be produced by a combination of all the other prifmatie colours. Now it muft be obferved, that this reverfe fpectrum of red is therefore the direst fectrum of a combination of all the other prifmatic colours, except the red; whence, on removing the eye from a piece of red filk to a fheet of white paper, the green fpectrum, which is perceived, may either be called the reverfe fpectrum of the red filk, or the direct fpectrum of all the rays from the white paper, except the red; for in truth it is bote. Hence we fee the reafon why it is not ealy to gain a direct fpectrum of any coloured object in the day-time, where there is much lateral light, except of very bright objects, as of the fetting fun, or by looking through an opake tube; becaufe the lateral external light falling alfo on the central part of the retina, contributes to induce the reverfe fpectrum, which is at the fame time the direct fpectrum of that lateral light, deducting only the colour of the central object which
we have been viewing. And for the fame reafon, it is diffieult to gain the reverfe fpectrum, where there is no lateral light to contribute to its formation. Thus, in looking through an opake tube on a yellow wall, and clofing my eye, without admitting any lateral light, the fpectra were all at firft yellow; but at length changed into blue. And on looking in the fame manner on red paper, I did at length get a green fpectrum; but they were ail at firft red ones: and the fame after looking at a candle in the night.

The reverfe fpectrum was formed with greater facility when the eye was thrown from the object on a fheet of white paper, or when light was admitted through the clofed eyelids; becaufe not only the fatigued part of the retina was inclined fpontancoufly to fall into motions of a contrary direction; but being fill fenfible to all other rays of light except that with which it was lately fatigued, was by thefe rays ftimulated at the fame time into thofe motions which form the reverfe fpectrum. Hence, when the reverfe fpectrum of any colour became faint, it was wonderfully revived by admitting more light through the eyelids, by removing the hand from before them: and hence, on covering the clofed eyelids, the fpectrum would often ceafe for a time, till the retina became fenfible to the ftimulus of the fmaller quantity of light, and then it recurred. Nor was the fpectrum only changed in vivacity, or in
degrec,
degree, by this admiffion of light through the eyelids; but it frequently happened, after having viewed bright objects, that the fpectrum in the clofed and covered eye was changed into a third fpectrum, when light was admitted through the eyelids: which third fpectrum was compofed of fuch colours as could pafs through the eyelids, except thofe of the object. Thus, when an area of half an inch diameter of pink paper was viewed on a fheet of white paper in the funfline, the ipectrum with clofed and covered eyes was green; but on removing the hands from before the clofed eyelids, the fpectrum became yellow, and returned inftantly again to green, as often as the hands were applied to cover the eyelids, or removed. from them: for the retina being now infenfible to red light, the yellow rays paffing through the eyelids in greatcr quantity than the other colours, induced a yellow fpectrum ; whereas if the fpectrum was thrown on white paper, with the eyes open, it became only a lighter green.

Though a certain quantity of light facilitates the formation of the reverfe frectrum, a greater quantity prevents its formation, as the more powerful ftimu'us excites even the fatigued parts of the èye into action; otherwife we fhould fee the fpectrum of the laft viewed object as often as we turn our eyes. Hence the reverfe fpectra are beft feen by gradually approaching the hand near
the elofed cyelids to a certain diftance only, which muft be varied with the brightnefs of the day, or the energy of the fpectrum. Add to this, that all dark fpectra, as black, blue, or green, if light be admitted through the eyelids, after they have been fome time covered, give reddifh fpectra, for the reafons given in Sect. III. Exp. 1.

From thele circumfances of the extraneous light coinciding with the fpontancous efforts of the fatigued retina to produce a reverfe fectrum, as was obferved before, it is not eafy to gain a direct fpectrum, except of objects brighter than the ambient light ; fuch as a candle in the night, the fetting fun, or viewing a bright object through an opake tube; and then the reverfe fpectrum is inftantaneoufly produced by the admiffion of fome external light; and is as inftantly eonverted again to the direct fpectrum by the exclufion of it. Thus, on looking at the fetting fun, on clofing the eyes, and covering them, a yellow fpectrum is feen, which is the direct fpectrum of the fetting fun; but on opening the eyes on the kky , the yellow fpectrum is immediately changed into a blue one, which is the reverfe fpectrum of the yellow fun, or the direct fpectrum of the blue fky , or a combination of both. And this is again transformed into a yellow one on clofing the eyes, and fo reciprocally, as quick as the motions of the opening and clofing cyelids. Hence, when Mr. Melvill obferved
ferved the fcintillations of the ftar Sirius to be fometimes coloured, thefe were probably the direct fpectrum of the blue fky , on the parts of the retina fatigued by the white light of the ftar. (Effays Phyfical and Literary, p. 81. V. 2.)
When a direct fpectrum is thrown on colours darker than itfelf, it mixes with them; as the yellow fpectrum of the fetting fun, thrown on the green grafs, becomes a greener yellow. But when a direct fpectrum is thrown on colours brighter than itfelf, it becomes inftantly changed into the reverfe fpectrum, which mixes with thofe brighter colours. So the yellow fpectrum of the fetting fun thrown on the luminous kky becomes blue, and changes with the colour or brightnefs of the clouds on which it appears. But the reverfe fpectrum mixes with every kind of colour on which it is thrown, whether brighter than itfelf or not: thus the reverfe fpectrum, obtained by viewing a piece of yellow filk, when thrown on white paper, was a lucid blue green ; when thrown on black Turkey leather, becomes a deep violet. And the fectrum of blue filk, thrown on white paper, was a light yellow; on black filk was an obfcure orange; and the blue fpectrum, obtained from orange-coloured filk, thrown on yellow, became a green.
In thefe cares the retina is thrown into activity or fenfation by the ftimulus of external colours, at the fame time that it continues the activity or
fenfation which forms the fpectra; in the fame manner as the prifmatic colours, painted on a whirling top, are feen to mix together. When there colours of external objects are brighter than the direct fpectrum which is thrown upon them, they change it into the reverfe fpectrum, like the admifion of external light on a direct fpectrum, as explained above. When they are darker than the direct fpectrum, they mix it, their weaker ftimulus being infufficient to induce the reverfe fpectrum.
3. Variation of Spectra in refpect to number, and figure, and remifion.

When we look long and attentively at any object, the eye cannot always be kept entirely motionlefs; hence, on infpecting a circular area of red filk placed on white paper, a lucid crefcent or edge is feen to librate on one fide or other of the red circle: for the exterior parts of the retina fometimes falling on the edge of the central filk, and fometimes on the white paper, are lefs fatigued with red light than the central part of the retina, which is conftantly expofed to it; and therefore, when they fall on the edge of the red filk, they perccive it more vividly. Afterwards, when the cye becomes fatigucd, a green fpectrum in the form of a crefcent is feen to librate on one fide or other of the central circle,

as by the unfteadinefs of the eye a part of the fatigued retina falls on the white paper; and as by the increafing fatigue of the eye the central part of the filk appears paler, the edge on which the unfatigued part of the retina oceafionally falls will appear of a deeper red than the original filk, becaufe it is compared with the pale internal part of it. M. de Buffon in making this experiment obferved, that the red edge of the filk was not only deeper coloured than the original filk ; but, on his retreating a little from it, it became oblong, and at length divided into two, which muft have been owing to his obferving it either before or behind the point of interfection of the two optic axifes. Thus, if a pen is held up before a diftant candle, when we look intenfely at the pen two candles are feen behind it; when we look intenfely at the candle two pens are feen. If the fight be unfteady at the time of beholding the fun, even though one eye only be ufed, many images of the fun swill appear, or luminous lines, when the cye is clofed. And as fome parts of thefe will be more vivid than others, and fome parts of them will be produced nearer the centre of the eye than others, thefe will difappear fooner than the others; and hence the number and Thape of thefe fpectra of the fun will continually. vary, as long as they exift. The caufe of fome being more vivid than others, is the unfteadinefs af the eye of the beholder, f_{\varnothing} that fome parts of the retina have been longer expofed to the funbeams. That fome parts of a complicated fpeetrum fade and return before other parts of it, the following experiment evinces. Draw three concentric circles; the external one an inch and a half in diameter, the middle one an inch, and the internal one half an inch; colour the external and internal areas blue, and the remaining one yellow, as in Fig. 4.; after having looked about a minute on the centre of thefe circles, in a bright light, the fpectrum of the external area appears firft in the clofed eye, then the middle area, and laftly the central one; and then the central one difappears, and the others in inverted order. If concentric eircles of more colours are added, it produces the beautiful ever changing fpectrum in Sect. I. Exp. 2.

From hence it would feem, that the centre of the eye produces quicker remiffions of fpectra, owing perhaps to its greater fenfibility; that is to its more energetic exertions. Thefe remiffions of feectra bear fome analogy to the tremors of the hands, and palpitations of the heart, of weak people: and perhaps a eriterion of the ftrength of any mufele or nerve may be taken from the time it can be continued in exertion.
4. Variation
4. Variation of Spectra in refpect to brilliancy; the vijibility of the circulation of the blood in the eye.

1. The meridian or evening light makes a difference in the colours of fome fpectra; for as the fun defcends, the red rays, which are lefs refrangible by the convex atmofphere, abound in great quantity. Whence the fpectrum of the light parts of a window at this time, or early in the morning, is red; and becomes blue either a little later or earlier; and white in the meridian day; and is alfo variable from the colour of the clouds or fky which are oppofed to the window.
2. All thcfe experiments are liable to be confounded, if they are made too foon after each other, as the remaining fectrum will mix with the new ones. This is a very troublefome circumftance to painters, who are obliged to look long upon the fame colour ; and in particular to thofe whofe eyes, from natural debility, cannot long continue the fame kind of exertion. For the fame reafon, in making thefe experiments, the refult becomes much varied if the eyes, after viewing any object, are removed on other objects for but an inftant of time, before we clofe them to view the fpectrum; for the light from the object, of which we had only a tranfient view, in the very time of clofing our eyes acts as a ftimulus on the fatigued retina; and for a time mixes its own fpectrum with it. Whence, after the eyelids arc clofed, either a dark field, or fome unexpected colours, are beheld for a few feconds, before the defired fpectrum becomes diffinctly vifible.
3. The length of time taken up in viewing an object, of which we are to obferve the fpectrum, makes a great difference in the appearance of the fpectrum, not only in its vivacity, but in its colour; as the direct fpectrum of the central object, or of the circumjacent ones, and alfo the reverfe fpectra of both, with their various combinations, as well as the time of their duration in the eye, and of their remiffions or alterations, depend upon the degree of fatigue the retina is fubjected to. The Chevalier d'Arcy conftructed a machine by which a coal of fire was whirled round in the dark, and found, that when a luminous body made revolution in eight thirds of time, is prefented to the cye a complete circle of fire; from whence he concludes, that the impreffion continues on the organ about the feventh part of a fecond. (Mém. de l'Acad. des Sc. 1765.) This, however, is only to be confidered as the fhorteft time of the duration of thefe direct fpectra; fince in the fatigued eye both the direct and reverfe fpectra, with their intermiffions, appear to take up many fecouds of time,
time, and feem very variable in proportion to the circumftances of fatigue or energy.
4. It fometimes happens, if the eyeballs have been rubbed hard with the fingers, that lucid fparks are feen in quick motion amidft the fpectrum wie are attending to. This is fimilar to the flafhes of fire from a ftroke on the eye in fighting, and is referibled by the warmth and glow, which appears upon the fkin after friction, and is probably owing to an acceleration of the arterial blood into the veffels emptied by the previous preffure. By being accuftomed to obferve fuch fmall fenfations in the eye, it is eafy to fee the circulation of the blood in this organ. I have attended to this frequently, when I have obferved my eyes more than commonly fenfible to other fpectra. The circulation may be feen either in both eyes at a time, or only in one of them; for as a certain quantity of light is neceffary to produce this curious phenomenon, if one hand be brought nearer the clofed eyelids than the other, the circulation in that eye will for a time difappear. For the eafier viewing the circulation, it is fometimes neceffary to rub the cyes with a certain degree of force after they are clofed, and to hold the breath rather longer than is agreeable, which, by accumulating more blood in the eye, facilitates the experiment; but in general it may be feen diftinctly after having examined other fpectra with your back to the
[^3]B b
light
light till the eyes become weary; then having covcred your clofed eyelids for half a minute, till the fpectruni is faded away which you were exanining, tarn your face to the light, and removing your hands from the eyelids, by and by again fhade them a little, and the circulation becomes curioufly diftinct. The ftreams of blood are however generally feen to unite, which fhews it to be the venours circulation, owing, I fuppofe, to the greater opacity of the colour of the blood in thefe veffels; for this venous circulation is alfo much more eafily feen by the microfcope in the tail of a tadpole.
5. Variation of Spectra in refpect to diftinctuefs and five; with a newo reay of magnifying objects.

1. It was before obferved, that when the two colours viewed together were oppofite to each other, as yellow and blue, red and green, \&cc. according to the table of reflections and tranfmiffions of light in Sir Ifaac Newton's. Optics, B. II. Fig. 3. the fpectra of thole colours were of all others the moft brilliant, and beft defined; becaufe they were combined of the reverie fpectrum of one colour, and of the direct fpectrum of the other. Hence, in books printed with finall types, or in the minute graduation of thermome-

```
    #
ters, or of clock-faces, which are to be feen at a diftance, if the letters or figurcs are coloured with orange, and the ground with indigo; or the letters with red, and the ground with green; or any other lucid colour is ufed for the letters, the ipectrum of which is fimilar to the colour of the ground; fuch letters will be feen much more diftinctly, and with lefs confufion, than in black or white: for as the fpectrum of the letter is the fame colour with the ground on which they are feen, the unfteadinefs of the cye in long attending to them will not produce coloured lines by the edges of the letters, which is the principal. caufe of their confufion. The beauty of colours lying in vicinity to each other, whofe fpectra are thus reciprocally fimilar to each colour, is owing to this greater eafe that the cye experiences in beholding them diftinctly; and it is probable, in the organ of hearing, a fimilar circumftance may conftitute the pleafure of melody. Sir Ifaac Newton obfcrves, that gold and indigo were agreeable when viewed together; and thinks there may be fome analogy between the fenfations of light and found. (Optics, Qui. 14.)

In viewing the fpectra of bright objects; as of an area of red filk of half an inch diameter on white paper, it is cafy to magnify it to tenfold its fize: for if, when the fpectrum is formed, you ftill keep your eyc fixed on the filk area, and remove it a few inches further from you, a green
\(\mathrm{Bb}_{2}\) circle
circle is feen round the red filk; for the angle now fubtended by the filk is lefs than it was when the fpectrum was formed, but that of the Tpectrum eontinues the fame, and our imaginafion places them at the fame diftanee. Thus 'when you view' a fpectrum on a fheet of white paper, if you approach the paper to the eye, you may diminifh it to a point; and if the paper is made to recede from the eye, the fpectrum will appear magnified in proportion to the diftance.

I was furprifed, and agreeably amufed, with the following experiment. I covered a paper about four inches fquare with yellow, and with a pen filled with a blue colour wrote upon the middle of it the word BANKS in capitals, as in fig. 5 , and fitting with my back to the fun, fixed my cyes for a minute exactly on the centre of the letter N in the middle of the word; after clofing my eyes, and fhading them fomewhat with my hand, the word was diftinclly feen in the fpectrum in ycllow letters on a blue field ; and then, on opening my eyes on a yellowifh wall at twenty feet diftance, the magnified name of BANKS appeared written on the wall in golden characters.

\section*{6. Conclufion.}

It was obferved by the learned M. Sauvages (Nofol. Method. Cl. VIII. Ord. i.) that the pulfations of the optic artery might be perceived by looking attentively on a white wall well illuminated. A kind of net-work, darker than the other parts of the wall, appears and vanifhes alternately with every pulfation. This ehange of the colour of the wall he well aferibes to the compreffion of the retina by the diaftole of the artery. The various colours produced in the cye by the preffure of the finger, or by a ftroke on it, as mentioned by Sir lfaac Newton, feem likewife to originate from the unequal preffure on various parts of the retina. Now as Sir Ifaac Newton has fhewn, that all the different colours are reflected or tranfmitted by the laminæ of foap bubbles, or of air, according to their different thicknefs or thimnefs, is it not probable, that the effect of the activity of the retina may be to alter its thicknefs or thinnefs, fo as better to adapt it to reflect or tranfmit the colours which ftimulate it into action ? May not mufcular fibres exift in the retina for this purpofe, which may be lefs minute than the locomotive mufcles of mierofeopic animals? May not thefe mufcular actions of the retina confitute the fenfation of light and colours; and the voluntary reBb 3 petitions
petitions of them, when the object is withdrawn, conftitute our memory of them? And laftly, may not the laws of the fenfations of light, here inveftigated, be applicable to all our other fenfes, and much contribute to elucidate many phenomena of animal bodies both in their healthy and difeafed ftate ; and thus render this inveftigation well worthy the attention of the phyfician, the metaphyfician, and the natural philofopher?

November 1, 1/85.

Dum, Liber! aftra petiṣ volitans trepidantibus alis,
Irruis immemori, parvula gutta, mari.
Me quoque, me currente rotâ revolubilis ætas
Volverit in tenebras,-i, Libet, ipfe fequor:

\section*{I N D E X}

TOTHE

\section*{sECTIONS OF PART FIRST.}
A.

AbORTION from fear, xxxix. 6. 5.
Abforption of folids, xxxiii. 3. I. xxxviii.
.......... of fluids in anafarca, xxxv. 1:3.
.......... in warm bath, xxix. 4. 5 -
Abforbent veffels, xxii. 2. xxix. I.
......... regurgitate their fluids, xxix. 2.
......... their valves, xxix. 2.
.. ..... communicate with vena portarum, xxvii. 2. Accumulation of fenforial power, iv. 2. xii. 5. 2.
Activity of fyftem too great, cure of, xii. 6.
....... to for fmall, cure of, xx. 7 .
Age, old, xii. 3. I. xxxvii. 4,
Ague-fit, xii. 7. I. xxxii. 3. 4. xxxii. g.
....... . how cured by bark, xii. 3. 4.
. . . . . . . periods, how occafioned xii. 2. 3. xxxii. 3. 4. xvii. 3. 6.

Ague cakes, xxxii. 7. xxxii. g.
Air, fenfe of frefh, xiv. 8.
... injures ulcers, xxviii. 2.
\(\ldots\) injected into veins, xxxii. 5.
Air-cells of the lungs, xxviii. 2.
Alcohol deleterious, xxx. 3:
Alliterations, why agreeable, xxii. 2 .
Aloes in leffened doles, xii. 3. I.
American natives indolent, xxxi. 2.
© : . . . . . . . . . . . . narrow fhouldered, xxxi: I.
Bb 4
Analogy

Analogy intuitive, xvii. 3. 7 .
Animals lefs liable to madnefs, xxxiii. y.
. . . . . . lefs liable to contagion, xxxiii. I.
....... how to teach, xxii. 3. 2.
....... their fimilarity to each other, xxxix. 4.8.
.......their changes after nativity, xxxix. 4. 8 .
.......t.their changes before nativity, xxxix. 48.
. . . . . . . lefs liable to contagious difeafes, why, xxxiii. Y. 5-
....... lefs liable to delirium and infanity, why, xxxiii.
I. 5 .
...... . eaffer to preferve than to reproduce, xxxvii.
....... electricity, xiv. 5 .
........ food, diftalte of, xxxviii. I.
….....appetency, xxxix. 4. 7.
Animalcula, xxxix. 11. 5 .
........... from boiling broth, xxxix. II. I:
Antipathy, x. 2. 2.
Appetites, xi. 2. 2. xiv. 8.
Aphthæ, xxviii.
Apoplexy, xxxiv. 1. 7.
........ not from deficient irritation, xxxii. 2. I,
Architecture, xii. 3.3.xyi. 10.
Arts, fine, xxii. 2.
Afparagus, its fmell in urine, xxix.
Affociation defined, ii. 2. 11. iv. 7. v. 2.
. ......... . affociate motions, \(x\).
......... Atronger than irritative ones, xxiv. 2. 8.
......... formed before nativity, xi. 3.
. . . . . . . . . with irritative ones, xxiv. 8 .
. . . . . . . . . with retrograde ones, xxv. 7. xxv. 10. xxv. I.5:
Afthma, xviii. 15 .
Attention, language of, xvi. 8. 6.
Atrophy, xxviiii.
Averfion, origin of, xi. 2.3.
B.

Balance ourfelves by vifion, \(x\). 1 .
Bandage increafes abforption, xxxiii. 3.2:
Barrennefs, xxxvi. 2. 3 .
Battement of founds, \(x x .7\).
Bath, cold. Sce Cold Bath.

Bath, warm, xxix. 4. 5.
Beauty, fenfe of, xvi. 6. xxii. 2.
Bile-dncts, xxx.
.....ftones, xxx. 3 .
..... regurgitates into the blood, xxiv. 2.7.
\(\ldots\)...vorniting of, xxx .3 .
Birds of paffage, xvi. I2.
.... nefts of, xvi. I3.
\(\ldots\).... colour of their eggs, xxxix .5 .
Biting in pain, xxxiv. 1. 3 .
\(\ldots\).... of mad animals, xxxiv. I. 3 .
Black fpots on dice appear red, xl. 3 .
Bladder, communication of with the inteftines, xxix. 3.
....... of firh, xxiv. 1. 4 .
Blood, transfufion of in nervous fevers, xxxii. 4 .
..... deficiency of, xxxii. 2. and 4 .
..... from the vena portarum into the inteftines, xxvii. 2:
..... its momentum, xxxii. 5. 2.
..... momentum increafed by venefection, xxxii. 5. 4
..... drawn in nervous pains, xxxii. 5. 4.
\(\ldots\).... its oxygenation, xxxviii.
Breathing, how learnt, xv. 4.
Breafts of men, xiv. 8 .
Brutes differ from men, xi. 2. 3. xvi. 17.
…. See Animals.
Buxton bath, why it feels warm, xii. 2. I. xxxii. 3.3.
C.

Capillary veffels are glands, xxvi. i.
Catalepfy, xxxiv. I. 5 .
Catarrh from cold fkin, xxxv. 1. 3. xxxv. 2. 3.
from thin caps in fleep, xviii. 15.
Catenation of inotions defined, ii. II. iv. 7 .
......... caufe of them, xvii. 1. 3 .
. . . . . . . . . defcribed, xvii.
..........continue fome time after their production, xvii. I. 3.
.. voluntary ones diffevered in fleep, xvii. I. 12. xvii. 3 . 13 .

Cathartics, external, their operation, xxix. 7.6 .
Caufation, animal, defined, ii. 11. iv. 7.
Caufe of caufes, xxxix. 4. 8.

Caufes inert and efficient, xxxix. 12, 2.
..... active and paffive, xxxix. 12. 3 .
..... proximate and remote, xxxix. 12. 4.
Chick in the egg, oxygenation of, xxxviii. 2.
Child riding on a ftick, xxxiv. 2. 6.
Chilnefs after meals, xxi. 3. xxxy. I. I.
Cholera, cafe of, xxv. 13.
Chyle, xxxix. II.
Circulation in the cye vifible, sl. 10. 4 .
Cold in the head, xii. 7 . 5 .
.... perceived by the teeth, xxxii. 3. 1. xiv. 6 .
.... air, ufes of in fevers, xxxii. 3. 3 .
.... feet, produces coryza, xxxv. 2. 3. xxxv. 1. 3.
.... bath, why it ftrengthens, \(x x x i i .3 .2\).
.... fhort and cold breathing in it, xxxii. 3. 2.
.... produces a fever-fit, xxxii. 3. 2 .
.... fit of fever the confequence of hot fit, xxxii. 9.3.
.... bathing in pulmonary hæmorrhage, xxvii. I.
.... fits of fever, xxxii. 4. xaxii. 9. xvii. 3. 3 .
.... not a ftimulus, xxxii. yo.
Comparing ideas, xv. 3 .
Confcioufnefs, xv. 3. 4 in dreans, xviii. \(I_{3}\).
Confumption, its temperament, xxxi. 1. and 2.
. . . . . . . . . . of dark-eyed patients, xxvii. 2.
............ . of lighlit-eyed patients, xxviii. 2.
............ is contagious, xxxiii. 2. \(7 \cdot\)
Confent of parts. See Sympathy.
Contagion, xii. 3.6. xix. 9. xxxiii, 2. 6. and 8. xxii. 3.3. does notenter the blood, xxxiii. 2.10. xxii.3.3-
Contraction and attraction, iv. I.
. . . . . . . . . . of fibres produces fenfation, iv. 5. xii. I. 6. .
. ........... continues fome time, xii. I. 5 -
............ alternates with relaxation, xii. I. 3 .
Convulfion, xvii. 1. 8. xxxiv. I. I. and 4. iii. 5. 8. .......... . of particular mufcles, xvii. I. 8.
............ periods of, xxxvi. 3. 9.
Colours of animals, cfficient caufe of, xxxix. 5. 1.
...... of eggs from fomale imagimation, xxxix. 5. x.
...... of the choroid coat of the eye, xxxix. 5. I.
...... of binds nefts, xvi. \({ }^{1} 3\).
Cory'za. See Catarrh.
Cough, nervous, periods of, xxxvi. 3.9.

Cramp, xviii. 15 xxiv. 1. 7.
Critical days'from lunations, xxxvi. 4 .
Cuckoo, xvi. 13. 5.

\section*{D.}

Darkifh room, why we fee well in it, xii. 2. I.
Debility fenforial and ftimulatory, xii. 2. 1.
.......direct and indirect of Dr. Brown, xii. 2. I. xxxii. 3. 2.
........ See Weaknefs.
........ from drinking fpirits, cure of, xii. 7.8.
....... in fevers, cure of, xii. 7. 8 .
Deliberation, what, xxxiv. I.
Delirium, two kinds of, xxxiii. 1. 4. xxxiv. 2. 2.
........ cafes of, iii. 5. 8 .
......... prevented by dreams, xviii. 2 .
Defire, origin of, xi. 2. 3 .
Diabetes explained, sxix. 4.
. . . . . . . with bloody urine, xxvii. 2 .
....... in the night, xviii. 15.
Diarrhœa, xxix. 4.
Digeftion, xxxiii. I. xxxvii.
......... Atrengthened by emetics, xxxv. I. 3 .
......... frengthened by regular hours, why, xxxvi.2.I.
Digitalis, ufe of in dropfy, xxix. 5.2.
Diftention acts as a fimulus, xxxii. 4.
........ . See Extenfion.
Diftinguifhing, xv. 3 .
Diurnal circle of actions, xxv. 4.
Doubting, xv. 3.
Dreams, viii. 1. 2. xiv. 2. 5 .
. . . . . . . their inconfiftency, xviii. 16.
....... no furprife in them, xviii. 17.
....... much novelty of combination, xviii. 9 .
Dropfies explained, xxix. 5. I.
Droply cured by infanity, xxxiv. 2.7.
….. cure of, xxix. 5. 2.
Drunkennefs. See Intoxication, xxi.
…........ diminifhed by attention, xxi. 8 .
Drunkards weak till next day, xvii. I. 7 .
.......... fammer, and ftagger, and weep, xii. 4. I. xxi. 4.

Drunkards

\section*{INDEX.}

Drunkards fee objects double, why, xxi. 7 .
….... become delirious, fleepy, fupid, txi. 5.
Dyfpncea in cold bath, xxxii. 3. 2.

\section*{E.}

Ear, a good one, xvi. 10.
.... noife in, xx. 7 .
Eggs of frogs, filh, fowl, \(x x x i x .2\).
.... of birds, why fpotted, xxxix. 5 .
.... with double yolk, xxxix. 4. 4.
Electricity, xii. r. xiv. 9.
.......... jaundice cured by it , xxx. 2 .
........ animal, xiv. 5 .
Embryon produced by the male, xxxix. 2 .
........ confifts of a living fibre, xxxix. 4 .
........ abforbs nutriment, receives oxygen, xxxix. r.
\(\ldots . . . .\). its actions and fenfations, xvi. 2.
Emetic. See vomiting.
Emotions, xi. 2. 2.
Ennui, or tædium vitæ, xxxiv. 2.3. xxxiii. I. I. xxxix. G.
Epileptic fits explained, xxxiv. I. 4. xxvii. 2.
\(\ldots \ldots \ldots\). in flecp, why, xviii. 14 . and \(I_{5}\).
Equinoxial lunations, xxxii. 6 .
Excitability perpetually varies, xii. r. 7 .
.......... fynonymous to quantity of fenforial power, xii. I. 7.

Exercife, its ufe, xxxii. 5. 3.
Exertion of fenforial power defined, xii. 2. r.
Exiftence in fpace, xiv. 2. 5.
Extenfion, fenfe of, xiv. 7 .
Eyes become black in fome epitepfres, xxvii. 2.

\section*{F.}

Face, fưfhing of after dimuer, xxxv. I. I.
.... why firft affected in fimail-pox, xxxv. I. I.
.... red from inflaneed liver, xxxv. 2. 2.
Fainting fits, xii. 5. J. xiv. 7 .
Fear, language of, xvi. 8. ו.
.... a caufe of fever, xxxii. 8.
.... caufe of, xvii. 3. 7 .
Fetus. Sce Embryon, xvi. 2. xxxix. x.

Fevers, irritative, xxxii. I.
....... intermittent, xxxii. I.xxxii. 3 .
.......fenfitive, xxxiii. .
...... not an effort of nature for relief, xxxii. 10.
...... paroxyfins of, xii. 7. 1. xii. 2. 3. xii. 3. 5.
....... why fome intermit and not others, xxxvi. I.
. . . . . . cold fits of, xxxii. 4. xxxii. 9. xvii. 3. 3.
...... . periods of, xxxvi. 3 .
. . . . . . have folar or lunar periods, xxxii. 6.
...... fource of the fymptoms of, xxxii. I.
...... proftration of flrength, in, xii. 4. 1. xxxii. \(3 \cdot 2\).
. . . . . . cure of, xii. 6. I.
. ..... . how cured by the bark, xii. 3. 4 .
.......cured by increafed volition, xii. 2. 4. xxxiv. 2. S.
...... beft quantity of ftimulas in, xii. 7. 8 .
Fibres. See Mufcles.
..... their mobility, xii. I 7. xii. 1. I.
..... contractions of, vi. xii. 3. I.
. . . . . four claffes of their motions, vi.
..... their motions diftinguifhed from fenforial ones, v .3 -
Figure, xir. 2. 2. iii. 1.
Fiih, their knowledge, xvi. I4.
Foxglove, its ufe in dropfies, xxix. 5. 2.
\(\ldots . .\). overdofe of, \(\times x w .17\).
Free-will, xy. 3.7.
G.

Gall-ftone, \(x \times v\). 1 7 . See Bile-ftones.
Generation, xxxiii. 1. xxxix.
Gills of fih, xxxviii. 2.
Glands, xaii. I. conglobate glands, xxii. 2.
...... have their peculiar ttimulus, xi. I.
. .... . their fenfes, xiv. 9. xxxix. 6.
...... invert their motions, xxv. 7 .
Golde. increafe their motions, \(x \times v .7\).
Golden rule for exhibiting wine, xii. 7.8.
.......... for leaving off wine, xii. 7.8.
Gout from inflamed liver, xxxy. 2. 2. xviii. 55. xxiv. 2. 8:
\(\ldots\) in the fomach, xxiv. 2 8. xxv. 17.
.... why it returns after evacuations, xxxiiv 4.
.... owing to vinous firit only, xxi. 10.
.... periods of, xxxvi. 3.6 .
Grinning

Grinning in pain, xxxiv. I. 3.
Gyration on one foot, xx. 5. and 6 .

\section*{H.}

Habit definced, ii. Ir iv. 7 .
Hæmorrhages, periods of, xxxvi. 3. Ir.
\(\ldots \ldots \ldots\)............ from paraly fis of veins, xxvii. I. and 2.
Hair and nails, xxxix. 3. 2.
… colour of, xxxix. 5. I.
Harmony, xxii. 2.
Head-achs, xxxv. 2. I.
Hearing, xiv. 4.
Heat, fenfe of, xiv. 6. xxxii. 3. y.
.... produced by the glands, xxxii. 3 .
.... external and internal, xxxii. 3. 1.
.... atmofphere of heat, xxxii. 3. I.
\(\ldots\) increafes during fleep, xviii. I5.
Hemicrania, xxxv. 2. I.
........... from decaying teeth, xxxv. 2. I.
Hepatitis, caufe of, xxxv. 2.3.
Hereditary difeafes, xxxix. 7,5.
Hermaphrodite infects, xxxix. 5 .
Herpes, xxviii. 2.
…... from inflamed kidney, xxxv. 2. 2.
Hilarity from diurnal fever, xxxvi. 3. r.
Hunger, fenfe of, xiv. 8.
Hydrophobia, xxii. 3. 3 .
Hypochondriacifin, sxxiii. 1. 1. xxxiv. 2. 3:

\section*{1.}

Idcas defined, ii. พิ. 2. \(7 \cdot\)
. . . . are motions of the organs of fenfe, iii. 4. xviii, \(\xi_{0}\) xviii. 10. xviii. 6 .
.... analogous to mufcular motions, iii. 5 .
.... continue fome time, xx. 6.
. . . . new ones cannot be invented, iii. 6. I.
.... abftracted ones, iii. 6. 4. xv. 5.
.... inconfiftent trains of, xviii. 16 .
.... perifh with the organ of fenfe, iii. 4. 4.
.... painful from inflammation of the organ, iii. 5.5.
.... irritative oncs, vii, 1. 4. vii. 3. 2, xv. 2. xx. 7 .
kueas of refemblance, contiguity, caufation, viii. 3.2.x.3.3. .... refemble the figure and other properties of bodies, xiv. 2. 2.
.... reccived in tribes; xv. I.
.... of the fame fenfe eafier combined, xv. I. I.
.... of reflection, xv. . . 6. ii. 12.
Ideal prefence, xv. 1. 7.
Identity, xv. 3. 5. xviii. 13.
Iliac partion, xxv . I5.
lmagination, viii. I. 2. xv. I. 7. xv. 2. 2.
\(\ldots \ldots \ldots\) of the mate forms the fex, xxxix. 6 .
Immaterial beings, xiv. 1. xiv. 2. 4.
Imitation, origin of, xii. 3.3. xxxix. 5. xxii. 3. xvi. 7. Impediment of fpeech, xvii. I. 10. xvii. 2. 10.
Infection. See Contagion.
Infammation, xii. 2. 3. xxxiii 2. 2.
............ great vafcular exertion in, xii. 2. I:
............ not from pains from defeat of ftimulus, xxxiii. 2. 3 .
............ of parts previoufly infenfible, xii. 3.7.
........... . often diftant from its caufe, xxiv. 8.
............ obferves folar days, sxxii. 6.
............. of the eye, xxxiii. 3. r.
........... of the bowels prevented by their continued action in fleep, xviii. 2.
Inoculation with blood. xxxiii. 2. 10.
Infane people, their great ftrength, xii. i.
Infanity (fee Madnefs) pleafurable one, xxxiv. 2, 6. Infects, their knowledge, xvi. 15. and 16 .
\(\ldots .\). . in the heads of calves, xxxix. I.
....... elafs of, xxxix. 4.8.
Inftinctive actions defined, xwi. I.
Inteftines, xxv. 3 .
Intoxication relieves pain, why, xxi. 3 .
. . . . . . . . . . from food after fatigue, xxi. 2.
......... . . difcafes from it, xxi. 10 .
........... See Drunkennefs.
Intuitive analogy, xvii. 3.7.
Invention, xy. 3.3.
Irritability increafes during flcep, xviii. 15 . Itching, xiv. 9 .
J.

Jaw, locked, xxxiy. I. 5.

Jaundice from paraly fis of the liver, xxx. z.
\(\ldots .\). ... cured by eleđ̛ricity, xxx .2 .
Judgnaent, xv. 3 .

> k.

Fnowledge of various animals, xvi. ir.

\section*{L.}

Lacrymal fack, xvi. 8. xxiv. 2. and 7 .
Lacteals, paraly fis of, xxviii. See Abforbents.
Lady playing on the harpfichord, xvii. 2 .
diffreffed for her dying bird, xvii. 2. 10.
Language, natural, its origin, xvi. 7 . \& 8 .
........ of various paffions defcribed, xvi. 8.
......... artificial, of various animals, xvi. 9 .
......... theory of, xxxix. 8. 3 .
Lapping of puppies, xvi. 4 .
Laughter explained, xxxiv. 1. 4 .
....... from tickling, xvii. 3. 5. xxxiv. 1 . 4.
….... from frivolous ideas, xxxiv. 1. 4. xviii. 12.
i, ife, long, art of producing, xxxvii.
Light has no momentum, iii. 3. I.
Liquor amnii, xvi. 2. xxxviii. 3. xxxix. I. x.
...... is nutritious, xxxviii . 3 .
-.....ffrozen, xxxviii 3 .
Jiver, paralyfis of, xxx. I. 4.
..... large of geefe, xxx. I. 6.
Love, fentimental, its origin, xvi. 6.
..... animal, xiv. 8. xvi. 5 .
Lunar periods affect difeafes, xxxii. 6.
Luft, xiv. 8. xvi. 5.
Lymphatics, paralyfis of, xxviii. See Abforbents.

> M.

Mad-dog, bite of, xxii. 3.3 .
Madnefs, xxxiv. 2. 1. xii. 2. 1.
Magnetifin, xii. r. I.
Magnifying objects, new way of, xl. 10. 5 .
Male animals have teats, xxxix. 4. 8.
.... pigcons give milk. xxxix. 4. 8 .

Ahan diftinguifhed from brutes, xi. 2. 3. xvi. 17.
Material tworld, xiv. I. xiv. 2. 5. xviii. 7 .
Matter, penetrability of, xiv. 2. 3.
purulent, xxxiii. 2.4.
Meafles, xxxiii. 2. 9.
Membranes, xxvi. 2.
Memory defined, ii. 2. 10. xv. I. 7. xv. 3.
Menftruation by luniar periods, xxxii. 6 .
Microfcopic animals, xxxix. 11. 5 .
\(\ldots . . . .\). vegetahles, xxxix. ir. Is
Mifcarriage from fear, xxxix. 6. 5 .
Mobility of fibres, xii. I. \(\ddagger\).
Momentum of the blood, \(x \times x\) xii. 5. 2.
. ..........fometimes increafed by venefection, xaxit. 5. 4.

Monfers, xxxix 4. 4. and 5.2.
......... without heads, xxxviii. 3 .
Moon and fun, their inflience, xxxii. 6 .
Mortification, xxxiii. 3.3.
Motion is either caufe or effect, i. xiv. 2. 2.
....... primary and fecondary; \(i\).
....... animal, i. iii. 1.
...... . propenfity to, xxii. ı.
...... animal, continue fome time after their production, xvii. I. 3 .
… . . . defined, a variation of figure, iii. r.xiv. 2.2. xxxix. \%o
Mucus, experiments on, xxvi. I.
fecretion of, xxvi. 2.
Mules xxxix. 4. 5. and 6 , xxxix. 5. 2.
Mule plants, xxxix. 2 .
Mufex volitantes, xl. 2 .
Mufcles conflitute an organ of fenfe, xiv. 7. ii. 3 .
....... ftimulated by extenfion, xi. t. xiv. 7 .
\(\ldots .\). . contract by firit of animation, xii. I. x. and 30 Mufic, xvi. 10. xxii. 2.
Mufical time, why agreeable, xii. 3. 3.
\[
\mathrm{N} .
\]

Naufea, xxv. 6 .
Nerves and braill, ii. 2. 3.
...... extremities of, form the whole fyttem; xxxvii. 3 .
...... are not changed with age, xxxvii. 4. yロL. д.

C c
Nervous

Nervous pains defined, xxxiv. I. I.
Number defined, xiv. 2. 2.
Nutriment for the embryon, xxxix. 5. 2.
Nutrition owing to ftimulus, \(x \times x\) vii. 3
. ...... . . by animal felection, xxxvii. 3 .
. . . . . . . . when the fibres are elongated, xxxvii. 3 .
- . . . . . like inflammation, xxxvii. 3 .

\section*{0.}

Objects long viewed become faint, iii. 3. 2.
Ocular fpectra, xl.
Oil externally in diahetes, xxix. 4.
Old age from inirritability, xxxvii.
Opium is fimulant, xxxii. 2. 2.
Opium promotes abforption after evacuation, xxxiii. 2. 10. in increafing dofes, xii. 3. 1.
Organs of fenfe, ii. 2.5 .
Organs when deftroyed ceafe to produce ideas, iii. 4. 4.
Organic particles of Buffon, xxxvii. 3: xxxix. 3. 3 .
Organ pipes, xx. 7.
Oxygenation of the blood, xxxviii.

\section*{P.}

Pain from excefs and defeet of motion, iv. 5. xii. 5. 3. xxxiv. 1. xxxy. 2. I.
... not felt during exertion, xxxiv. I. 2.
... from greater contraction of fibres, sii. 1.6 .
... from accumulation of fenforial power, xii. 5.3. xxiii. 3. I.
... from light, preffure, heat, cauftics, xiv. 9 -
... in epilepfy, s.xxv. 2. 1.
.. . diftant from its caufe, xxiv. 8.
... from fonc in the bladker, xxix. 2. 1.
... of head and back from defect of heat, xxxii. 3 .
... from a gall-ftone, xxxv. 2. 1. xxv. 17.
... of the ftomach in gout, xxv . 17 .
... of floulder in hepatites, xixv. 2. 4.
... produces volition, iv. 6 .
Palenefs in cold fit, xxxii. 3. 2 .
Palfies explained, xxxiv. r. 7.
Paralytic limbs ferctch from irritation, vii. I- 3 .

Paralytic patients move their found limb much, xii. 5. I. Paraly fir from great e ertion, xii. 4.6.
...... from leis exertion, xii. 5, 6.
....... of the lacteals, xxviii.
...... of the liver, xxx. 4 .
...... of the right anim, why, xxxiv. I. 7 .
...... of the veins, xxvii. 2 .
Particles of matter will not approach, xii. i. i.
Paffions, xi. 2. 2.
....... connate, xvi. i.
Pecking of chickens, xvi. 4.
Perception defined, xv. 3. I. ii. 2. 8.
Periods of agnes, how formed, xxxii. 3. 4.
. ...... of difeares, xxxvi.
...... of natural actions and of difeafed actions, xxxvI.
Perspiration in fever-fits, \(x \times x\) ii. 9 . See Sweat.
Petechia, xxvii. 2.
Pigeons fecrete milk in their ftomachs, xxxix. 4. S.
Piles, xxvii. 2 .
Placenta a pulmonary organ, xxxviii. 2.
Pleafure of life, xxxiii. 1. xxxix. 5 .
...... from greater fibrous contractions, xii. 1. 6 .
...... what kind cures laughter, xxxiv... I. 4.
\(\ldots .\). . what kind caufes flee, xxxiv. I. 4 .
Pleurify, periods of, xxxvi. 3. 7.
...... cause of, xxxv. 2. 3 .
Prometheus, flory of, xxx .3 .
Prostration of strength in fevers, xii. 4. I.
Pupils of the eyes large, xxxi. I.
Pulse quick in fevers with debility, xii. r. 4. xiii. 5.4. xxxii. 2. I.
.... in fevers with frrength, xxxii. 2.
.... from defect of blood, xxxii, 2. 3. xii. 1. 4.
\(\ldots\). weak from emetics, \(x \times v\). i 7 .
-

\section*{Q.}

Quack advertisements injurious. Preface.
Quadrupeds have no fanguifernus lochia, xxxviii. 2. .......... have nothing fimilar to the yolk of egg, xxxix. I.

\section*{R.}

Raphania, periods of, xxxvi. 3.9.
Reafon, ix. 1. 2. xv. 3 .
Reafoning, xv. 3.
Recollection, ii. 10. ix. 1. 2. xv. 2.3.
Relaxation and bracing, xxxii. 3. 2 .
Repetition, why agreeable, xii. 3.3. xxii. 2.
Refpiration affected by attention, xxxvi. 2. 1.
Reftleffnefs in fevers, xxxiv. I. 2.
Retrograde motions, xii. 5. 5. xxv. 6. xxix. If.
......... of the ftomach, xxv. 6 .
.......... of the fkin, xxv. 9 .
......... of fluids, how diftinguifhed, xxix. 8 .
......... . how cauled, xxix. Ir. 5.
Retrograde vegetable motions, xxix. 9 .
Retina is fibrous, iii. 2. xI. I.
...... is active in vifion, iii. 3. xl. 1.
. . . . . . excited into fpafmodic motions, xl. 7 .
\(\ldots\). . is fenfible during fleep, xviii. 5. xix. 8.
Reveric, xix. r. xxxiv. 3 .
...... cafe of a fleep-walker, xix. 2.
....... is an epileptic difeafe, xix. 9 .
Rhymes in poetry, why agreeable, xxii. 2.
Rheumatifm, three kinds of, xxvi. 3 .
Rocking young children, xxi. 4 .
Rot in fheep, xxxii. 7 .
Kuminating aninals, xxv. I.

\section*{S.}

Saliva produced by mercury, xxiii.
..... by food, xxiii. I.
..... . by ideas, xxiii. 2. and 5 .
..... by difordered volition, xxiii. \%.
Scirrhous tumours revive, xii. 2. 2.
Screaming in pain, xxxiv. 1. 2.
Scrofula, its temperament, xxxi. I.
......... rxviii. 2. xxxix. 4. 5.
Scurvy of the lungs, xxvii. 2.
Sed ficknelis, xx. 4.
flopped by attention, XX. 5 .
Secretion, xxxiii. I. xxxvii.

Secretion increafed during fleep, xviii. 16.
Seeds require oxygenation, xxxviii. 2.
Senfation defined, ii. 2. 9. v. 2. xxxix. 84.
difeafes of, xxxiii.
from fibrous contractions, iv. 5. xii. I. 6.
in an amputated limb, iii. 7. 3.
affects the whole fenforium, xi. 2.
produces volition, iv. 6.
Senfibility increafes during fleep, xviii. 15 -
Senfitive motions, viii, xxxiii. 2. xxxiv. I.
....... . fevers of two kinds, xxxiii. I. 2.
ideas, xv.2.2.
Senforium defined, ii. 2. I.
Senfes correct one another, xviii. 7 .
diftinguifhed from appetites, xxxiv. I. I.
Senforial power. See Spirit of Animation.
....... great expence of in the vital motions, xxxii. 3.2.
........two kinds of exerted in fenfitive fevers, xxxiii.
1. 3.
. ....... . powers defined, v. r.
. . . . . . . motions diftinguifhed from fibrous motions, v. 3.
. . . . . . . not much accumulated in fleep, xviii. 2.
....... . powers, accumulation of, xii. 5. J.
....... exhauftion of, xii. 4. r.
........ wafted helow natural in hot fits, xxxii. 9. 3 .
....... lefs exertion of produces pain, xii. 5.3.
lefs quantity of it, xii. 5.4.
Senfual motions diftinguifhed from mufcular, ii. 7 .
Sex owing to the imagination of the father, xxxiv. 5 .
... xxxix. 7.6. xxxix. 6. 3. xxxix. 6. 7.
Shingles from inflamed kidney, xxxv. 2.2.
Shoulders broad, xxxi. I. xxxix. 7.6.
Shuddering from cold, xxxiv. I. I. and 2.
Sight, its accuracy in men, xvi. 6.
Skin, fcurf on it, xxvi. I.
Sleep fufpends volition, xviii. I.
.... defined, xviii. 2 I.
.... remote caufes, xviii. 20,
.... fenfation continues in it, xviii. 2 .
.... from food, xxi. i.
.... from rocking, uniform founds, xxị. I.
.... from wine and opium, xxi. 3 .
.... why it invigorates, xii. 5.1.
C \(\subset 3\)
Sisep,

Steep, pulfe flower and fuller in, xxxii. 2. A.
.... interrupted, xxvii. 2.
.... from breathing lefs oxygene, xviii. 20.
.... from being whiried on a millftone, xxiii. 20.
.... from application of cold, xviii. 20.
.... induced by regular hours, xxxvi. 2. 2.
Sleeping animals, xxi. 2. 2.
Sleep-walkers. See Reveric, xix. I.
Small-pox, xxxiii. 2, 6. xixxiv. 6. I.
. . . . . . . . eruption firft on the face, why, xxxv. I. I. xxxiii. 2. 10 .
. . . . . . . . . the bloorl will not infect, xxxiii. 2. Jo.
. . . . . . . . . obeys lunations, xxxvi. 4 .
Smell, xiv. 5. xvi. 5.
Smiling, origin of, xvi. 8. 4 .
Solidity, xiv.2. I.
Somnambulation. See Reverie, xix. 1.
Space, xiv. 2. 2.
Spafm, doctrine of, xxxii. 10.
Spectra, ocular, xl.
. . . . . . miftaken for fpectres, xl. 2.
...... . vary from long infpection, iii. 3.5.
Spirit of animation. See Senforial Power.
.... of animation caufes fibrous contraction, iv. 2. ii. i. xiv. 2. 4.
.... poffeffes folidity, figure, and other properties of matter, xiv. 2. 3.
Spirits and angels, xiv. 2. 4.
Stammering explained, xvii. r. 10. xvii. 2. 10.
Stimulus defined, ii. 2. 13. iv. 4. xii. 2. I.
....... of various kinds, xi. I.
....... . with leffened effect, xii. 3. I.
........ with greater effect, xii. 3.3.
........ ceafes to produce fenfation, xii. 3. 3.
Stomach and inteltines, \(x \times v\).
. . . . . . inverted by great ftimulus, xxv. 6.
. . . . . . . its actions decreafed in vomiting, xxxv. I. 3 .
. . . . . . . a blow on it occafions death, xxv. I7.
Stools black, xxvii. 2.
Strangury, xxxv. 2. 1.
Sucking lefore nativity, xvi. 4.
Suckling children, fenfe of, viv. 8.
Suggeftion defined, ii. 10. xv. 2. 4 .

Sun and moon, their influence, xxxii. 6.
Surprife, xvii. 3.7. xviii. 17.
Sufpicion attends madnefs, xxxiv. 2. 4.
Swallowing, act of, xxv. I. xvi. 4 .
Sweat, cold, xxv. 9. xxix. 6.
..... in hot fit of fever, xxxii: 9 .
..... in a morning, why, xviii. 15 .
Sweaty hands cured by lime, xxix. 4.9.
Swinging and rocking, why agreeable, xxi. 3.
Sympathy, xxxv. I.
Syncope, xii. 7. i. xxxiv. I. 6.

> T.

Tædium vitæ. See Ennui.
Tape-worm, xxxix. 2.3.
Tafte, fenfe of, xiv. 5 .
Tears, fecretion of, xxiv.
..... . from grief, xvi. 8. 2.
...... from tender pleafure, xri. 8. 5.
..... from ftimulus of nafal duct, xvi. 8. xxiv. \&.
by volition, xxiv. 6.
Teeth decaying caufe headachs, xxxv. 2. I.
Temperaments, xxxi.
Theory of medicine, wanted. Preface.
Thirft, fenfe of, xiv. 8.
...... why in dropfies, xxix. 5 .
Tickle themfelves, children cannot, xvii. 3.5.
Tickling, xiv. 9.
Time, xiv. 2. 2. xviii. 12.
..... lapfe of, xv. 3. 6.
..... poetic and mufical, why agreeable, xxii. 2. dramatic, xviii. 12.
Tooth-edge, xvi. 10. iii. 4. 3. xii. 3.3.
Touch, fenfe of, xiv. 2. I.
...... liable to vertigo, xxi. 9 .
...... of various animals, xvi. 6 .
Trains of motions inverted, xii. 5.5.
Transfufion of blood in nervous fever, xxxii. 4.
Tranflations of matter, xxix. 7 .
Typhus, beft quantity of ftimulus in, xii. 7.8.
....... periods of, obferve lunar days, xxxii. 6 .
Ulcers,

\section*{U.}

Ulcers, art of healing, xxxii. 3.2.
\(\ldots \ldots\) of the lungs, why difficult to heal, xxviii. 3.
Uniformity in the fine arts, why agreeable, xxii. 2.
Urine pale in intoxication, xxi. 6 .
. . . . . paucity of in anafarca, why, xxix. 5 .
..... its pafflage from inteftines to bladder, xxix. 3.
..... . copious during fleep, xviii. 15.

> V.

Variation, perpetual, of irritability, xii. z. I.
Vegetable buds are inferior animals, xiii. i.
. . . . . . . exactly refemble their parents, xxxix.
. . . . . . . . poffefs fenfation and volition, xiii. 2.
have affociate and retrograde motions, xiii. 4. xxix. 9.
........ their anthers and ftigmas are alive, xiii. 5 .
Vegetables have organs of fenfe and ideas, xiii. 5 -
:........ contend for light and air, xxxix. 48.
........ dupliçature of their flowers, xxxix. 4. 4:
Veins are abforbents, xxvii. I.
.... paralyfis of, xxvii. I.
Venereal orgafm of brutes, xxxii. 6.
Vehefection in nervous pains, xxxii. 5. 4.
Verbs of three kinds, xv. 3.4.
Verfes, their meafure, xxii. 2.
Vertigo, xx. defined, \(x x\). if.
. ...... in looking from a tower, xx. Y.
....... . in 2 fhip at fea, \(x x .4\).
. . . . . . . of all the fenfes, xxi. 9 .
........ by intoxication, \(x x x v\). x. 2 .
Vibratory motions perceived after failing, xx.5. xx. 10.
Vinegar makes the lips pale, xxvii. 1.
Vis medicatrix of nature, xxxix. 4.7.
Vifion, fenfe of, xiv. 3.
Volition defined, v. e. xxxiv. I.
. . . . . . . affects the whole fenforium, xi. 2.
........ difeafes of, xxxiv.
Voluntary, x. 2. 4.
Voluntary motions, ix. xxxiv. I.
Voluntary ideas, xv. 2. 3 .

\section*{I NDEX.}

Voluntary ideas, criterion of, xi. 2. 3. xxxiv. F.
Vomiting from vertigo, xx. 8.
........ from drunkennefs, xx. 8. xxi. 6.
........ by intervals, xxv. 8.
....... . by voluntary efforts, \(x \times v, 6\).
........ of two kinds, xxxv. : 3 .
. . . . . . . in cold fit of fever, xxxii. 9. 1.
....... ftopped by quickfilver, xxv. 16.
........ weakens the pulfe, xxy. I7.
W.

Waking, how, xviii. 14 .
Walking, how learnt, xvi 3.
Warmth in fleep, why, xviii. 15 .
Weaknefs defined, xii. 1. 3. xii. 2. э. xxxii. 3.2.
........ cure of, xii. 7. 8. See Debility.
Wit producing laughter, xxxiv. \(\boldsymbol{\lambda}\). 4 .
3 Vorld generated, xxxix. 4. 8.
Worm, fluke, xxxii. \%.

\section*{Z O O N O M I A;}
OR,

\section*{THE LAWS OF ORGANIC LIFE.}

PARTIII.

CONTAINING

THE ARTICLES OF THE MATERIA MEDICA,

\section*{WITH AN ACCOUNT OF THE}

OPERATION OF MEDICINES.

IN VIVUM CORPUS
AGUNT MEDICAMENTA.

\section*{PREFACE:}

The Materia Medica includes all thofe fubfances, which may contribute to the reftoration of health. Thefe may be conveniently diftributed under feven articles according to the diverfity of their operations.
1. Nutrientia, or thofe things which preferve in their natural fate the due exertions of all the irritative motions.
2. Incitantia, or thofe things which increafe the exertions of all the irritative motions.
3. Secerinentia, or thofe things which increafe the irritative motions, which conftitute fecretion.
4. Sorbentia, or thofe things which increafe the irritative motions, which conftitute abforption.
5. Invertentia, or thofe things which invert the natural order of the fucceffive irritative motions.
6. Rever-
6. Revertentia, or thofe things which reftore the natural order of the inverted irritative motions.
7. Torpentia, thofe things which diminifh the exertions of all the irritative motions.

It is neceffaiy to apprize the reader, that in the following account of the virtues of Medicines their ufual dofes are always fuppofed to be exhibited; and the patient to be cxpofed to the degree of exterior heat, which he has been accuftomed to, (where the contrary is not mentioned), as any variation of either of thefe circumftances varies their effects.

\section*{ARTICLES}

OF THE

\section*{MATERIA MEDICA.}

\section*{Art. I.}

\section*{NUTRIENTIA.}
I. 1. Those things, which preferve in their natural ftate the due exertions of all the irritative motions, are termed nutrientia; they produce the growth, and reftore the wafte, of the fyftem. Thefe confift of a variety of mild vegetable and animal fubftances, water, and air.
2. Where ftroinger ftimuli have been long ufed, they become neceffary for this purpofe, as muftard, fpice, falt, beer, wine, vinegar, alcohol, opium. Which however, as they are unnatural. ftimuli, and difficult to manage in refpect to quantity, are liable to fhorten the fpan of human life, fooner rendering the fyftem incapable of being fiimulated into action by the nutrientia. See Scct. XXXVII. 4. On the fame account life is fhorter in warmer climates than in more temperate ones.

\section*{II. Observations on the Nutrientia.}
I. 1. The flefh of animals contains more nourifhment, and ftimulates our abforbent and fecerning veffels more powerfully, than the vegetable productions, which we ufe as food; for the carnivorous animals can faft longer without injury than the graminivorous; and we feel ourfelves warmer and ftronger after a meal of flefh than of grain. Hence in difeafes attended witly cold extremities and general debility this kind of diet is preferred; as in rickets, dropfy, fcrofula, and in hyfteric and hypochondriac cafes, and to prevent the returns of agues. Might not flefh in fmall quantities bruifed to a pulp be more advantageoufly ufed in fevers attended with debility than vegetable dict?

That flefh, which is of the darkeft colour, generally contains more nourifhment, and fimulates our veffels more powerfully, than the white kinds. The flefh of the carnivorous and pifcivorous animals is fo fimulating, that it feldom enters into the food of European nations, except the fwine, the Soland goofe (Pelicanus Baffanus), and formerly the fwan. Of thefe the fwine and the fwan are fed previoufly upon vegetable aliment; and the Soland goofe is taken in very fmall quantity, only as a whet to the appetite: Next to thefe are the birds, that feed upon infeets;
fects, which are perhaps the moft fimulating and the mof nutritive of our ufual food.

It is faid that a greater quantity of volatile alkali can be obtained from this kind of flefh, to which has been afcribed its ftimulating quality. But it is more probable, that frefh flefh contains only the elements of volatile alkali.
2. Next to the dark colouned flefh of animals, the various tribes of fhell-fifh feem to claim their place, and the wholefome kinds of mufhrooms, which muft be eftecmed animal food, both for their alcalefcent tendency, their ftimulating quality, and the quantity of nourifhment, which they afford; as oyfters, lobfters, crabfifh, fhrimps; mufhrooms; to which perhaps might be added fome of the fifh without fcales; as the eel, bairbolt, tench, fmelt, turbot, turtle.

The fich of many kinds of fifh, when it is fuppofed to have undergone a bcginning putrefaetion, becomes luminous in the dark. This feems to fhew a tendency in the phofphorus to efcape, and combine with the oxygen of the atmofphere; and would hence fhew, that this kind of flcth is not fo perfectly animalized as thofe before mentioned. This light, as it is frequently feen on rotten wood, and fomctimes on veal, which has been kept too long, as I have been told, is commonly fuppofed to have its caufe from putrefaction; ' but is neverthelefs moft probably of phofphoric origin, like that feen in the dark on

\footnotetext{
VOL. 1 I.
D d
oyfter-
}
oyfter-fhells, which have previouny been ignited and afterwards expofed to the funfhine, and on the Bolognian ftone. See Botan. Gard. Vol. I. Cant. I. line 182, the note, and additional note X .
3. The flefh of young animals, as of lamb, veal, and fueking-pigs, fupplies us with a ftill lefs ftimulating food. The broth of thefe is faid to beeome four, and eontinues fo a confiderable time before it changes into putridity ; fo mueh does their flefh partake of the chemieal properties of the milk, with which thefe animals are nourifhed.
4. The white meats, as of turkey, partridge, pheafant, fowl, with their eggs, feem to be the next in mildnefs; and hence are generally firft allowed to convalefeents from inflammatory difeafes.
5. Next to thofe fhould be ranked the white river-fifh, which have fcales, as pike, perch, gudgeon.
II. 1. Milk unites the animal with the regetable fource of our nourifhment, partaking of the properties of both. As it contains fugar, and will therefore ferment and produce a kind of wine or fpirit, which is a common liquor in Si beria; or will run into an acid by fimple agitation, tion, as in the churning of cream ; and lafly, as it contains coagulable lymph, which will undergo the procels of putrefaction like other animal fubftances, as in old cheefe.
2. Milk may be feparated by reft or by agitation into cream, butter, butter-milk, whey, curd. The cream is eafier of digeftion to adults, becaufe it contains lefs of the coagulum or cheefy part, and is alfo more nutritive. Butter confifting of oil between an animal and vegetable kind contains ftill more nutriment, and in its recent ftate is not difficult of digefion if taken in moderate quantity. See Art. I. 2. 3. 2. Buttermilk if it be not bitter is an agreeable and nutritive fluid ; if it be bitter it has fome putrid parts of the cream in it, which had been kept too long; but is perhaps not lefs wholefome for being four to a certain degree: as the inferior people in Scotland choofe four milk in preference to fkimmed milk before it is become four. Whey is the leaft nutritive and eafieft of digeftion. And in the fpring of the year, when the cows feed on young grafs, it contains fo much of vegetable properties, as to become a falutary potation, when drunk to about a pint every morning, to thofe who during the winter have taken zoo little vegetable nourifhment, and who are thence liable to bilious concretions.
3. Cheefe is of various kinds, according to the greater or lefs quantity of cream, which it conlains, and according to its age. Thofe eheefes, which are eafieft broken to pieces in the mouth, are generally eafieft of digeftion, and contain moft mutriment. Some kinds of cheefe, though flow of digeftion, are alfo flow in ehanging by chemical proceffes in the flomach, and therefore will frequently agree well with thofe, who have a weak digcftion; as I have feen toafted cheefe vomited up a whole day after it was eaten without having undergone any apparent change, or given any uneafinefs to the patient. It is probable a portion of fugar, or of animal fat, or of the gravy of boiled or roafted moat, mixed with cheefe at the time of making it, might add to its pleafant and nutritions quality.
4. The reafon, why autumnal milk is fo much thieker or coagulable than vernal milk, is not cafy to underftand; but as new milk is in many sefpects fimilar to ehyle, it may be confidered as food already in part digefted by the animal it is taken from, and thence fupplies a nutriment of eafy digeftion. But as it requires to be c̈urdled by the gaffiric acid, before it can enter the lacteals, as is feen in the ftomachs of ealves, it feems more fuitable to children, whofe fomachs abound more with acidity, than to adults; but neverthe-
lefs fupplics good nourifhment to many of the latter, and particularly to thofe, who ufe vegetable food, and whofe ftomachs have not been much accuftomed to the unnatural fimulus of fipice, falt, and fpirit. See Clars I. 1.2. 5.
III. 1. The fecds, roots, leaves, and fruits of plants, conftitute the greateft part of the food of mankind; the refpective quantities of nourifhment, which thefe contain, may perhaps be eftimated from the quantity of ftarch, or of fugar, they can be made to produce: in farinaccous fecds, the mucilage feems gradually to be converted into ftarch, while they romain in our granaries; and the farch by the germination of the young plant, as in making malt from barley, or by animal digeftion, is converted into fugar. Hence old wheat and beans contain more ftarch than nciv; and in our ftomachs other vegetable and animal materials are converted into fugar; which conftitutes in all creatures a part of their chyle.

Hence it is probable, that fugar is the moft nutritive part of vegetables; and that they are more nutritive, as they are convcrible in greater quantity into fugar by the power of digeftion; as appears from fugar being found in the chyle of all animals, and from its exifting in great quantity in the urine of patients in the diabetes, of which a curious cafc is rclated in Scet. XXIX. 4.

D d 3
where
where a man labouring under this malady ate and drank an.enormous quantity, and fometimes voided fixtcen pints of water in a day, with an ounce of fugar in each pint.

The nutritive quality of fugar is not only fhewn by the flaves in Jamaica, and other animals, becoming fattcr in the fugar harveft, though they are forced to labour more, but alfo from the many inftances of its nourifhing for fome years very old people, who could take little of any other food. Many of which cafes are recorded in Dr. Mofely's Treatife on Sugar, and three I have myfelf witneffed.
- Nor is this to be wondered at, as it conftitutes a part of the chyle both of vegctables and animals; which only feem to differ from cach other in this circumftance, that the chyle of vegetables coulfifts principally of fugar and mucilage diffolved in water; as the juice extracted from birch and maple-trees in the vernal months, and is therefore tranfparent and colourlefs; but the chyle of animals alfo contains oil, mixed with the fugar and mucilage and water, which gives it its milky appearance, owing to its imperfect folution.
2. Oil, when mixed with mucilage or coagulable lymph, as in cream or new milk, is eafy of digeftion, and conftitutes probably the moft nutritive part of animal diet; as oil is another part of the chyle of all animals. As thefe two materials;
rials, fugar and butter, contain much nutriment under a fmall volume, and readily undergo fome chemical change fo as to become acid or rancid; they are liable to difturb weak ftomachs, when taken in large quantity, more than aliment, which contains lefs nourifhment, and is at the fame time lefs liable to chemical changes; becaufe the chylc is produced quicker than the torpid lacteals can abforb it, and thence undergoes a further chemical procefs. Sugar and butter therefore are not fo eafily digefted, when taken in large quantity, as thofe things, which contain lefs nutriment; hence, where the fo: mach is weak, they muft be ufed in lefs quantity. But the cuftom of fome people in reftraining children entircly from them, is depriving them of a very wholefome, agreeable, and fubftantial part of their diet. Honey, manna, fap-juice, are different kinds of lefs pure fugar.
3. All the efculent vegetables contain a bland oil, or mucilage, or ftarch, or fugar, or acid; and, as their ftimulus is moderate, are properly given alone as food in inflammatory difcafes; and mixed with milk conftitute the food of thoufands. Other vegetables poffers various degrees and various kinds of fimulus; and to thefe we are beholden for the greater part of our Materia Medica, which produce naufea, ficknefs,
\[
\text { Dd } 4 \text { vomiting, }
\]
vomiting, catharfis, intoxication, inflammation, and even death, if unkilfully adminifered.

The acrid or intoxicating, and other kinds of vegetable juices, fuch as producc ficknefs, or evacuate the bowels, or fuch even as are only difagrecable to the palate, appear to be a part of the defence of thofe vegetables, which poffefs them, from the affaults of larger animals or of infects. As mentioned in the Botanic Garden, Part II. Cant. I. line 161, note. This appears in a forcible manner from the perufal of fome travels, which have been publifhed of thofe unfortunate people, who have fuffered fhipwreck on uncultivated countries, and have with difficulty found food to fubfift, in otherwife not inhofpitable climates.
4. As thefe acrid and intoxicating juices generally refide in the mucilage, and not in the farch of many roots, and feeds, according to the obfervation of M. Parmentier, the wholefome or nutritive parts of fome vegetables may be thus feparated from the medicinal parts of them. Thus if the root of white briony be rafped into cold water, by means of a bread-grater made of a tinned iron plate, and agitated in it, the acrid juice of the root along with the mucilage will be diffolved, or fwim, in the water; while a farch perfeclly wholefome and nutritious will fubfide

Art. I. 2. 3.4. NUTRIENTIA.
fubfide, and may be ufed as food in times of fcareity.
M. Parmentler further obferves, that potatoes contain too much mucilage in proportion to their ftareh, whieh prevents them from being converted into good bread. But that if the ftarch be eollected from ten pounds of raw potatoes by grating them into cold water, and agitating them, as above mentioned; and if the ftarch thus procured be mixed with other ten pounds of poiled potatoes, and properly fubjected to fer mentation like wheat flour, that it will make as good bread as the fineft wheat.

Good bread may alfo be made by mixing wheat-flour with boiled potatoes. Eighteen pounds of wheat-flour are faid to make twentytwo pounds and a half of bread. Eighteen pounds of wheat-flour mixed with nine pounds of boiled potatoes, are faid to make twenty-nine pounds and a half of bread. This difference of sveight muft arife from the difference of the previous drynefs of the two materials. The potatoes might probably make better flour, if they were boiled in fteam, in a elofe veffel, made fome degrees hotter than common boiling water.

Other vegetable matters may be deprived of their 100 great aerimony by boiling in water, as the great variety of the cabbage, the young tojs of white briony, water-crefles, afparagus, with innumerable roots, and fome fruits. Other plants
have their acrid juices or bitter particles diminifhed by covering them from the light by what is termed blanching them, as the ftems and leaves of cellery, cndive, fea-kale. The former method either extracts or decompofes the acrid particles, and the latter prevents them from being formed. See Botanic Garden, Vol. I. additional note XXXIV. on the Etiolation of vegetables.
5. The art of cookery, by expofing vegetable and animal fubftances to heat, has contributed to increafe the quantity of the food of mankind by other means befides that of deftroying their acrimony. One of thefe is by converting the acerb juices of fome fruits into fugar, as in the baking of umripe pears, and the bruifing of unripe apples; in both which fituations the life of the vegetable is deftroyed, and the converfion of the harfh juice into a fiveet one muft be performed by a chemical procefs; and not by a vegetable one only, as the germination of barley in making malt has generally been fuppofed.

Some circumftances, which feem to injure the life of feveral fruits, feem to forward the faccharine procefs of their juices. Thus if fome kinds of pears are gathered a week before they would ripen on the tree, and are laid on a heap and covered, their juice becomes fweet many days fooner. The taking off a circular piece of the bark from a branch of a pear-tree "caufes the fruit of
that branch to ripen fooner by a fortnight, as I have more than once obferved. The wounds made in apples by infects occafion thofe apples to ripen fooner; caprification, or the piercing of figs, in the ifland of Malta, is faid to ripen them fooner; and I am well informed, that, when bunches of grapes in this country have acquired their expected fize, if the ftalk of each bunch be cut half through, they will fooner ripen.

The germinating barley in the malt-houfe I believe acquires little fweetnefs, till the life of the feed is deftroyed, and the faccharine procefs then continued or advanced by the heat in drying it. Thus in animal digeftion, the fugar produced in the ftomach is abforbed by the lacteals as faft as it is made, otherwife it ferments, and produces flatulency; fo in the germination of barley in the malt-houfe, fo long as the new plant lives, the fugar, I fuppofe, is abforbed as faft as it is made; but that, which we ufe in making beer, is the fugar produccd by a chemical procefs after the death of the young plant, or which is made more expeditioufly, than the plant can abforb it.

It is probably this faccharine procefs, which obtains in new hayflacks too hafily, and which by immediatcly running into fermentation produces fo much heat as to fet them on fire. The greateft part of the grain, or fceds, or roots, ufed
in the diftilleries, as wheat, canary feed, potatocs, are not I believe previoufly fubjected to germination, but are in part by a chemical procefs converted into fugar, and immediately fubjected to vinous fermentation; and it is probable a procefs may fometime be difcovered of produeing fugar from farch or mcal; and of feparating it from them for domeftic purpofes by aleohol, which diffolves fugar but not mucilage; or by other means.

Another method of increafing the nutriment of mankind by cookery, is by diffolving eartilages and bones, and tendons, and probably fome vegetables, in ftcam or water at a much higher degree of heat than that of boiling. This is to be done in a elofe veffel, whieh is called Papin's digefter; in whlich, it is faid, that water may be made redhot, and will then difiolve all animal fubftances; and might thus add to our quantity of food in times of fearcity. This reffel fhould be made of iron, and fhould have an oval opening at top, with an oval lid of iron larger than the aperture; this lid thould be flipped in endways, when the veffel is filled, and then turned, and raifed by a ferew above it into contact with the under edges of the aperture. There fhould alfo be a fmall tube or hole corered with a weighted valve to prevent the danger of burfting the digefter.

Where the powers of digeftion are weakened, broths made by boiling animal and vegetable fubfiancos
fubftances in water afford a nutriment; though I fuppole not fo great as the flefh and vegetables would afford, if taken in their folid form, and mixed with faliva in the act of maftication. The aliment thus prepared fhould be boiled but a fhort time, nor fhould be fuffered to continue in our conmon kitchen-utenfils afterwards, as they arc lined with a mixture of half lead and half tin, and are therefore unwholefome, though the copper is completely covered. And thofe foups, which have any acid or wine boiled in them, unlels they be made in filver, or in china, or in thofe pot-veffels, which arc not glazed by the addition of lead, are truly poifonous; as the acid, as lemon-juice or vinegar, when made hot, erodes or diffolves the lead and tin lining of the copper-veffels, and the leaden glaze of the porcelain oncs. Hence, where filver cannot be had, iron veffels are prefcrable to tinncd copper ones; or thofe made of tinned iron-plates in the com-mon'tin-fhops, which are faid to be covered with purc or block tin.
6. Another circumfance, which facilitates the nourifhment of mankind, is the mechanic art of grinding farinaceous feeds into powder between mill-ftones; which may be called the artificial tecth of fociety. It is probable, that fome foft Finds of wood, efpecially when they have undergone a kind of fermentation, and become of
loofer texture, might be thus ufed as food in times of famine.

Nor is it improbable, that hay, which has been kept in tacks, fo as to undergo the faccharine procefs, may be fo managed by grinding and by fermentation with yeaft like bread, as to fcrve in part for the fuftenance of mankind in times of great fcarcity. Dr. Prieftley gave to a cow for fome time a ftrong infufion of hay in large quantity for her drink, and found that she produced during this treatment above doublc the quantity of milk. Hence if bread cannot be made from ground hay, there is great reafon to fufpect, that a nutritive beverage may be thus prepared either in its faccharine ftate, or fermented into a kin of beer.

In times of great fcarcity there are other vegetables, which though not in common ufe, would moft probably afford wholefome nourifhment, cither by boiling them, or drying and grinding them, or by both thofe proceffes in fucceffion. Of thefe are perhaps the tops and the bark of all thofe vegetablcs, which are armed with thorns or prickles, as goofeberry trees, holly, gorfe, and perhaps hawthorn. The inner bark of the clm tree makes a kind of gruel. And the roots of fern, and probably of very many other roots, as of grafs and of clover taken up in winter, might yield nourifhment cither by boiling or baking, and feparating the fibres from the pulp by beat-

ARt. I. 2.3.7. NUTRIENTIA.
ing them; or by getting only the farch from thofe, which poffefs an acrid mucilage, as the white briony. And the alburnum of perhaps all trees, and efpecially of thofe which bleed in fpring, might produce a faccharine and mucilaginous liquor by boiling it in the winter or fpring.
7. However the arts of cookery and of grinding may increafe or facilitate the nourifhment of mankind, the great fource of it is from agriculture. In the favage ffate, where men live folely by hunting, I was informed by Dr. Franklin, that there was feldom more than one family exifted in a circle of five miles diameter; which in a ftate of pafturage would fupport fome hundred people, and in a ftate of agriculture many thoufands. The art of feeding mankind on fo fmall a grain as wheat, which feems to have been difcovered in Egypt by the immortal name of Ceres, fhewed greater ingenuity than feeding them with the large roots of potatoes, which feem to have been a difcovery of ill-fated Mexico.

This greater production of food by agriculture than by pafturage, fhews that a nation nourifhed by animal food will be lefs numerous than if nourifhed by vegetable; and the former willtherefore be liable, if they are engaged in war, to be conquered by the latter, as Abel was flain by Cain. This is perhaps the only valid argu-
ment againft inelofing open arable fields. The great production of human nourifhment by agriculture and pafturage evinees the advantage of fociety over the favage flate; as the number of mankind becomes increafed a thoufand fold by the arts of agrieulture and pafturage; and their happinefs is probably under good governments improved in as great a proportion, as they become liberated from the hourly fear of beafts of prey, from the daily fear of famine, and of the occafional incurfions of their cannibal neighbours.

But pafturage cannot exift without property both in the foil, and the herds which it nurtures; and for the invention of arts, and production of tools neceffary to agriculture, fome muft think, and others labour; and as the efforts of fome will be crowned with greater fuecefs than that of others, an inequality of the ranks of fociéty muft fuceeed; but this inequality of mankind in the prefent ftate of the world is too great for the purpofes of produeing the greateft quantity of human nourifhment, and the greateft fum of human happinefs; there fhould be no flavery at one end of the chain of fociety, and no defpotifm at the other:-By the future improvements of human reafon fuch governments may poffibly hereafter be efablifhed, as may a hundred-fold inereafe the numbers of mankind, and a thoufand-fold their happincfs.
IV. 1. Water
IV. 1. Water muft be confidered as a part of our nutriment, becaufe fo much of it enters the compofition of our folids as well as of our fluids; and becaufe vegetables are now believed to draw almoft the whole of their nourifhment from this fource. As in them the water is decompofed, as it is perfpired by them in the funfhine, the oxygen gas inercafes the quantity and the purity of the atmolphere in their vicinity, and the hydrogen feems to be retained; and to form the nutritive juices, and confequent fecretions of refin, gum, swax, honcy, oil, and other regetable productions. See Botanic Garden, Part I. Cant. IV. line 25 , note. It has however other ufes in the fyftem, befides that of a nourifing material, as it difutes our fluids, and lubricates our folids; and on all thefe aecounts a daily fupply of it is required.
2. River-water is in general puret than fpringwater; as the neutral falts wafhed down from the earth decompofe each other, excent perliaps the marine falt; and the earths, with which fpring-water frequently abounds, is precipitated; yet it is not improbable, that the calcareous earth diffolved in the water of many fprings may eontribute to our nourifhment, as the water from fprings, which contain earth, is faid to conduce to enrieh thofe lands, which are flooded with it, more than river svater.

\footnotetext{
Yol.. If.
Ee
The
}

The Chincfe are faid, by Sir G. Staunton, to purify the water of fome muddy rivers or canals, by liirring them with a hollow cane full of fmall holes, in the tube of which are enclofed fome pieces of alum. And the bakers in London affert, that one ufe of alum is to clear the New River water, and thus to render their bread whiter. Where any volatile alcali is mixed with water, as often happens from the fiable dung and other ordure of populous towns, it will be converted to vitriolic ammoniac by a folution of alum; and calcareous carth may be converted into gypfum, and fubfide along with the earth of the alum. See Clafs II. 1. 6. 16.
3. Many arguments feem to fhew, that calcareous earth contributes to the nourifhment of animals and vegetables. Firft becaule calcareous earth conftitutes a confiderable part of them, and muft therefore either be received from without, or formed by them, or both, as milk, when taken as food bry a lactefcent woman, is decompofed in the flomach by the procefs of digeftion, and again in part converted into milk by the pectoral glands. Secordly, becaufe from the analogy of all organic life, whatever has compofed a part of a vegetable or arrimal may again after its chemical folution become a part of another vegetable or animal, fuch is the general tranfinigration of matter. And thirdly, becaufe the great
ufe of lime in agriculture on almoft all kinds of foil and fituation camot be fatisfactorily explained from its chemical properties alone. Though thefe may aifo in certain foils and fituations have. confiderable effect.

The chemical ufes of lime in agriculture may be, 1. from its deftroying in a fhort time the cohcfion of dead vegetable fibres, and thus reducing them to earth, which otherwife is effected by a flow procefs either by the confumption of infects or by a gradual putrefaction. Thus I am informed that a misture of lime with oak bark, after the tanner has extracted from it whatever is foluble in water, will in two or three monthis reduce it to a fine black carth, which, if only laid in heaps, it would require as many years to effect by its own fpontaneous fermentation or putrefaction. This effect of lime muft be particularly advantageous to newly enclofed commons when firft broken up.

Secondly, lime for many months continues to attract moiture from the air or earth, which it deprives I fuppofe of carbonic acid, and then fuffers it to exhale again, as is feen on the plaftered walls of new houfes. On this account it muft be advantageous when mixed with dry or fandy foils, as it attracts moifture from the air above or the carth beneath, and this moifture is then abforbed by the lymphatics of the roots of vegetables. Thirdly, by mixing lime with clays Eと 2
it is believed to make them lefs cohefive, and thus to admit of their being more eafily penetrated by vegetable fibres. A mixture of lime with clays deftroys their fuperabundancy of acid, if fuch exifts, and by uniting with it converts it into gypfum or alabafter. And laftly, frefh lime deftroys worms, fnails, and other infects, with which it happens to come in contact.

Yet do not all thefe chemical properties feem to account for the great ufes of lime in almoft all foils and fituations, as it contributes fo much to the melioration of the crops, as well as to their increafe in quantity. Wheat from land well limed is believed by farmers, millers, and bakers, to be, as they fuppofe, thinner fkinned; that is, it turns out more and better flour; which I fuppofe is owing to its containing more farch and lefs mucilage. In refpect to grais-ground I am informed, that if a fpadeful of lime be thrown on a tuffock, which horfes or cattle have refufed to touch for years, they will for many fucceeding feafons cat it quite clofc to the ground.

Onc property of lime is not perhaps yet well underfood, I mean its producing fo much heat, when it is mixed with water; which may be owing to the clementary fluid of heat confolidated in the lime. It is the fteam occafioned by this heat, when water is fprinkled upon lime, if the water be not in too great quantity or too cold, which breaks the lime into fuch-fine powder as almof
almont to become fluid, which cannot be cffected perhaps by any other means, and which I fuppofe mult give great preference to lime in agriculture, and to the folutions of calcareous earth in water, over chalk or powdered lime-ftone, when fpread upon the land.
4. It was formerly believed that watcres repicte with calcarcous earth, fuch as incruft the infide of tea-kettles, or are faid to petrify mofs, were liable to produce or to increafe the fone in the bladder. This miftaken idea has lately been exploded by the improved chemiftry, as no calcareous earth, or a very minute quantity, was found in the calculi analyfed by Schecle and Bergman. The waters of Matlock and of Carlfbad, both which cover the mofs, which they pafs through, with a calcareous cruft, are fo far from increafing the ftone of the bladder or kidnejs, that thofe of Carlfbad are celcbrated for giving relief to thofe labouring under thefe difeafes. Philof. Tranf. Thofe of Matlock are drunk in great quantitics without any fufpicion of injury ; and I well know a perfon who for above ten years has drunk about two pints a day of cold water from a fpring, which rery much incrufts the veffels, it is boiled in, with calcareous earth, and affords a copious calcarcous fediment with a folution of falt of tartar, and who enjoys a ftate of uninterrupted health.

E c 3
V. 1. As
V. 1. As animal bodies confift much both of oxygen and azote, which make up the compofition of atmofpheric air, thefe fhould be counted amongft nutritious fibiftances. Befides that by the experiments of Dr. Prieftlcy it appears, that the oxygen gains admittance into the blood through the moift membranes of the lungs; and fcems to bc of much more immediate confequence to the prefervation of our lives than the other kinds of nutriment above fpecified.

As the bafis of fixed air, or carbonic acid gas, is carbone, which alfo conftitutes a great part both of vegetable and animal bodics; this air thould likewife be reckoned amongft nutritive fubftances. Add to this, that when this carbonic acid air is fwallowed, as it efcapes from beer or cyder, or when water is charged with it as detruded from limeftone by vitriolic acid, it affords an agreeable fenfation both to the palate and ftomach, and is thercfore probably natritive.

The immenfe quantity of carbonc and of oxygen which conftitutc fo great a part of the limeftone countries is almoft beyond conception, and, as it has been formed by animals, may again become a part of them, as well as the calcarcous matter with which they are united. Whence it may be conceivect, that the waters, which abound with limeftonc in folution, may fupply nutriment both to animals and to vegetables, as mentioned above:
VI. 1. The
VI. 1. The manner, in which nutritious particles are fubftituted in the place of thofe, which are mechanically abraded, or chemically decompofed, or which vanifh by animal abforption, muft be owing to animal appetency, as defcribed. in Sect. XXXVII. 3. and is probably fimilar to the procefs of inflammation, which produces new veffels and new fluids; or to that which conftitutes the growth of the body to maturity. Thus the granulations of new flefh to repair the injuries of wounds are vifible to the eye; as well as the callous matter, which cements broken bones; the calcareous matter, which repairs injured fnail-fhells; and the threads, which are formed by filk-worms and fpiders; which are all fecreted in a fofter ftate, and harden by exficcation, or by the contact of the air, or by abforption of their more fluid parts.

Whether the materials, which thus fupply the wafte of the fyftem, can be given any other way than by the ftomach, fo as to prefcrve the body for a length of timc, is worth our inquiry ; as cafes fometimes occur, in which food cannot bc introduced into the flomach, as in obftructions of the œefoplagus, inflammations of the throat, or in hydrophobia; and other cales are not unfrequent in which the power of digeftion is nearly or totally deftroyed, as in anorexia cpileptica, and in many fevers.

In the former of thefe circumftances liquid
\[
\text { Ee } 4 \quad \text { nutrinent }
\]
nutriment may fometimes be gotten into the flomaeh through a flexible catheter; as deferibed in Clafs III. 1. 1.15. In the latter many kinds of mild aliment, as milk or broth, lave frequently been injected as clyfters, together with a fmall quantity of opium, as ten drops of the tinclure, three or four times a day; to which alfo might be added very fmall quantities of vinous fpirit. But thefe, as far as I have obferved, will not long fuffain a perfon, who cannot take any fuftenance by the ftomaeh.
2. Another mode of applying nutritive fluids might be by cxteniive fomentations, or by immerging the whole body in a bath of broth, or of warm milk, which might at the fame time be coagulated by rennet, or the acid of the ealf's ftomach; broth or whey might thus probably be introduced, in part at leaft, into the circulation, as a folution of nitre is faid to have been abforbed in a pediluvium, which was afterwards difcovered by the manner in which paper dipped frequently in the urine of the patient and dried, burnt and fparkled like touch-paper. Great quantity of water is alfo known to be abforbed by thofe, who have bathod in the warm bath after exercife and abftinence from liquids. Cleopatra was faid to trayel with 4000 milch-affes in Her train, and to bathe every morning in their inilk, which the probably might ufe as a cofmetic rather than a nutritive.
3. The transfufion of blood from another animal into the vein of one, who could take no fuftenance by the throat, or digeff none by the ffomach, might long continue to fupport him; and perhaps other nutriment, as'milk or mucilage, might be this way introduced into the fyffem, but we have not yet fufficient experiments on this fubject. Sce Sect. XXXII. A. and Clafs I. 2. 3. 25. and Sup. I, 14. 2.

Til. Various kinds of condiments, or fauces, have been taken along with vegetable or animal food, and have been thought by fome to ftrengthen the procefs of digeftion and confequent procefs of nutrition. Of thefe wine, or other fermented liquors, vinegar, falt, fpices, and muffard, have been in moft common uife, and I believe to the injury of thoufands. As the ftomach by their violent ftimulus at length lofes its natural degrce of irritability, and indigeftion is the confequence; which is atfended with fatulency and emaciation. Where any of thefe have been taken fo long as to induce a habit, they muft pither be continued, but not increafed; or the ufe of them fhould be gradually and cautiouny diminifhed or difcontinued, as directed in Sect. XII. 7. 8.
III. Catalogue of the Nutrientia.
I. 1. Venifon, beef, mutton, hare, goofe, duck, woodcock, fnipe, moor-game.
2. Oyfters, lobfters, crabs, fhrimps, mufhrooms, cel, tench, barbolt, fmelt, turbot, fole, turtle.
3. Lamb, veal, fucking-pig.
4. Turkey, partridge, pheafant, fowl, eggs.
5. Pike, perch, gudgeon, trout, grayling.
II. Milk, cream, butter, buttermilk, whey, cheefe.
III. Wheat, barley, oats, peafe, potatoes, turnips, carrots, cabbacre, afparagus, artichoke, fpinach, beet, apple, pear, plum, apricot, nectarine, peach, ftrawberry, grape, orange, melon, cucumber, dried figs, raifins, fugar, honey. With a great variety of other roots, feeds, leaves, and fruits.
IV. Water, river-water, fpring-water, calcarcous earth.
V. Air, oxygene, azote, carbonic acid gas.
VI. Nutritive baths and clyfters, transfufion of blood.
VII. Condiments.

\section*{Art. II.}

\section*{INCITANTIA.}
I. 1. Thóse things, which increafe the exertions of all the irritative motions, are termed incitantia. As alcohol, or the fpirituous part of fermented liquors, opium, and many drugs, which are ftill efteemed poifons, their proper dofes not being afcertained. To thefe fhould be added the exhilarating paffions of the mind, as joy, love: and externally the application of heat, electricity, ether, effential oils, friction, and exercife.
2. Thefe promote both the fecretions and abforptions, increafe the natural heat, and remove thofe pains, which originate from the defect of irritative motions, termed nervous pains; and prevent the convulfions confequent to them. When given internally they induce coftivenefs, and deep coloured urine; and by a greater dore intoxication, and its confequences.
II. Observations on the Incitintia.
I. 1. Opium and alcohol increafe all the fecretions and abforptions, The increafe of the fecretion of fenforial power appears from the violent exertions of drunken people; the fecretion of fiveat is more certainly excited by opium or wine than
by any other medicine; and the increafe of general heat, which thele drugs produce, is an evidence of their effect in protaoting all the fecretions; fince an increafe of fecretion is alwars attended with increafe of heat in the part, as in hepatic and other infiammations.
2. But as they at the fame time promote abforption; thofe fluids, which are fecreted into receptacles, as the urinc, bile, inteftinal and pulmonary mucus, have again their thinner parts abforbed; and hence, though the quantity of fecreted fluid was increafed, yet as the abforption was alfo increafed, the excretion from thefe receptacles is leffened; at the fame time that it is deeper coloured or of thicker confiftence, as the urine, alvine feces, and pulmonary mucus. Whereas the perfiriation being fecreted on the furface of the body is vifible in its increafed quantity, before it can be reabforbed; whence arifes that crroneous opinion, that opium increafes the cutaneous fecretion, and lefens all the others.
3. It muft however be noied, that after evacuations opium feems to promote the abforptions more than the fecretions; if you except that of the fenforial power in the brain, which probably fuffers no abforption. Hence its efficacy in refiraining hemorrlages, after the veffels are comptied, by promoting venous abforption.
A. In
4. In ulecrs the matter is thickened by the exhibition of opium from the increafed abforption of the thimer parts of it; but it is probable, that the whole fecretion, including the part which is abforbed, is increafed; and hence new fibres are fecreted along with the matter, and the ulecr fills with new granulations of flefh. But as no ulcer can heal, till it ceafes to difcharge; that is, till the abforption becomes as great as the excretion; thofe medicincs, which promote abforption only, are more advantageous for the healing an ulcer after it is filled with new fefh; as the Pcruvian bark internally, with bandages and folutions of lead externally.
5. There are many pains which originate from a want of due motion in the part, as thofc occafioned by cold; and all thofe pains which are attended with cold extremities, and are gencrally termed nervous. Thefc are relieved by whatever excites the part into its proper actions, and hence by opium and alcolol ; which are the moft univerfal ftimulants we are acquainted with. In there cates the effect of opium is produced, as foon as the body becomes generally warm; and a degree of intoxication or heep follows the ceffation of the pain.

Thefe nervous pains (as they are calledi) frequently return at certain periods of time, and are alio frequentiy fucceeded by convulfions;
in thefe cafes if opium removes the pain, the convulfions do not come on. For this purpofe it is beft to exhibit it gradually, as a grain every kour, or half hour, till it intoxicates. Here it mult be noted, that a much lefs quantity will prevent the periods of thefe cold pains, than is neeeffary to relieve them after their accefs. As a grain and half of opium given an hour before the expected paroxyfm will prevent the cold fit of an intermittent fever, but will not foon remove it, when it is already formed. For in the former cafe the ufual or healthy affociations or catenations of motion favour the effect of the medieine; in the latter cafe thefe affociations or catenations are difordered, or interrupted, and new ones are formed, which fo far eounteract the effect of the medicine.

When opium has been required in large dofes to cafe or prevent convulfions, fome have advifed the patient to omit the ufe of wine, as a greater quantity of opiun might then be exhibitcd; and as opium feems to increafe abforption more, and fecretion lefs, than vinous fpirit; it may in fome calcs be ufeful to exohange one for the other ; as in difeafes attended with too great evacuation, as diarrhœa, and dyfentery, opium may be preferable; on the contrary in tetanus, or locked-jaw, where inflammation of the fyftem might be of fervice, wine may be preferable to opium ; fee Clafs III. 1. 1. 12. I have gencrally obferved,
oblerved, that a mixture of fpirit of wine and warm water, given alternately with the dofes of opium, las fooneft and moft certainly produced that degree of intoxication, which was neceffary to relieve the patient in the epilepfia dolorifica.

The external application of opium may alfo be ufed with advantage, and efpecially when the fomach rejects its intermal ufe ; for this purpole I have directed the whole fpine of the back to be moiftened with tincture of opium with fuccefs in epileptic convulfions. And an extenfive friction with a liniment confiting of fix grains of opium, well triturated with an ounce of hog's fat, has lately been faid to induce fleep in maniacal cafes', by Dr. L. Fiank of Florence.

Injections of a fotution or tincture of opium into the rectum act on the general conftitution, but require about double the quantity for that purpofe as when taken into the fomach. Injections of a folution of opium into the urethra may be of fervice to relicve pain, or to produce the abforption of the new veffels produced by inflammation, after fufficient cvacuations, as is feen when it is applied to an inflamed eyc. Or laftly, to allcviate the pain from acrid difcharges by increafing their abforption, or the pain from torpor of the part, as in fome tooth-achs, by its external application.
6. There is likewife fome relief given by opi-
um to inflammatory pains, or thofe from excefs of motion in the affected part ; but with this difference, that this relief from the pains, and the fleep, which it occafions, do not occur till fome hours after the exhibition of the opium. This requires to be explained; after the fimulus of opium or of alcohol ceafes, as after common drunkennefs, a confequent torpor comes on ; and the whole habit becomes lefs irritable by the natural ftimuli. Hence the head-achs, fieknefs, and languor, on the next day after intoxication, with cold fkin, and general debility. Now in pains from excefs of motion, called inflammatory pains, when opium is given, the pain is not relieved, till the debility comes on after the ftimulus ceafes to act; for then after the greater fimulus of the opium has exhaufted much of the fenforial power, the lefs fimulus, which before caufed the pain, does not now excite the part into unnatural action.

In thefe cafes the ftimulus of the opium firft increafes the pain; and it fonctimes happens, that fo great a torpor follows, as to produce the death or mortification of the affected part; whence the danger of giving opium in inflammatory difeafes, efpecially in inflammation of the bowels; but in general the pain returns with its former violence, when the torpor above mentioned ceafes. Hence thefe pains attended with inflammation are beft relieved by copious venefections,
fection, other evacuations, and the clafs of medicines called torpentia.
7. Thefe pains from excefs of motion are attended with increafed heat of the whole, or of the affected part, and a ftrong quick pulfe; the pains from defect of motion are attended with cold extremities, and a weak pulfe; which is alfo generally more frequent than natural, but not always fo.
8. Opium and alcohol are the only two drugs, we are much acquainted with, which intoxicate; and by this circumftance are eafily diftinguifhed from the fecernentia and forbentia. Camphor, and cicuta, and nicotiana, are thought to induce a kind of intoxication; and there are many other drugs of this clafs, whofe effects are lefs known, or their dofes not afcertained; as atropa belladonna, hyofeyamus, ftramonium, prunus laurorerafus, menifpermum, cynogloftum, fome fungi, and the water diftilled from black cherry-ftones; the laft of which was once much in ufe for the convulfions of children, and was faid to have good effect; but is now improvidently left out of our phammacopœias. I have known one leaf of the lauroceralus, fhred and made into tea, given every morning for a week with no ill confequence to a weak hyfteric lady, but rather perhaps with advantage.

It is probable, that other bitter kernels, as thofe of horfe-chefnuts, and of acorns, æfculus hippocaftanum, and quercus robur, may poffefs fomewhat of an intoxicating quality; and by this kind of ftimulus, as well as by their bitter part, may be ufed to prevent the paroxyfm of an ague, if adminiffered an hour befure the expected accefs of it, as is lately affirmed by Dr. Fuchs of Jena; who fays, an extract prepared from the ripe kernels of the horfe-chefrut acts like an extract of Peruvian bark; and adds that the bark alfo of this tree is ufed with fuccefs inftead of the Peruvian bark.
- 9. The pernicious effects of a continucd ufe of much vinous fpirit is daily feen and lamented by phyfficians; not only early debility, like premature age, but a dreadful catalogue of difeafes is induced by this kind of intemperance'; as dropfy, gout, leprofy, epileply, infanity, as defcribed in Botanic Garden, Part II. Canto III. line 357. The ftronger or lefs diluted the fpirit is taken, the fooner it feems to deftroy, as in dramdrinkers; but fill fooner, when kernels of aprionts, or bitter almonds, or laurel-leaf, are in fufed in the fpirit, which is termed ratafia: as then two poifons are fivallowed at the fame time. And vinegar, as it contains much vinous firit, is probably a noxious part of our diet. And the diftilled vinegar, which is commonly fold in the
fhops, is truly poifonous, as it is generally diftill, ed by means of a powter or leaden alembic-head or worm-tube, and abounds with lead; which any one may detect by mixing with it a folution of liver of fulphur. Opium, when taken as a luxury, not as a medicinc, is as pernicious as alcohol; as Baron de Tott relates in his account of the opium-eaters in Turkcy.
10. It muft \(b c\) obferved, that a frequent repetition of the ufe of this clafs of medicines fo habituates the body to their ftimulus, that their dofe may gradually be increafed to an aftonifhing quantity, fuch as otherwife would inftantly deftroy life; as is frequently feen in thofe, who accuftom themfelves to the daily ufe of alcohol and opium ; and it would feem, that thefe unfortunate people become difeafed as foon as they omit their ufual potations; and that the confequent gout, dropfy, pally, or pimpled face, occur from the debility occafioned from the want of accurtomed ftimulus, or to fome change in the contractile fibres, which requires the continuance or increafe of it. Whence the cautions neceffary to be obferved are mentioned in Scct. XII. 7. 8.
11. It is probable, that fome of the articles in the fubfequent catalogue do not induce intoxication, though they have been efteemed to do and on this account fhould rather belong to other arrangements, as to the fecernentia, or forbentia, or invertentia.
II. 1. Externally the application of heat, as the warm bath, by its ftimulus on the flin excites the excretory ducts of the perfpirative glands, and the mouths of the Iymphatics, which open on its furface, into greater action; and in confequence many other irritative motions, which are affociated with them. To this increafed action is added pleafurable fenfation, which adds further activity to the fyffem ; and thus many kinds of pain rcceive relicf from this additional atmof phere of heat.

The ufc of a warm bath of about 96 or 98 degrecs of heat, for half an hour once a day for threc or four months, I have known of great fervice to weak people, and is perhaps the leart noxious of all unnatural ftimuli; which however, like all other great cxcitement, may be carricd to excefs, as complained of by the ancients. The ummeaning application of the words relaxation and bracing to warm and cold baths has much prevented the ufe of this grateful ftimulus; and the mifufe of the term warm-bath, when applied to baths colder than the body, as to thofe of Buxton and Matlock, and to artificial baths of lefs than 90 degrees of heat, which ought to be termed
termed cold ones, has contributed to miflead the unwary in their application.

The ftimulus of winc, or fpice, or falt, increafes the heat of the fyltem by increafing all or fome of the fecretions; and hence the ftrength is diminifhed afterwards by the lofs of fluids, as well as by the increafed action of the fibres. But the ftimulus of the warm-bath fupplics heat rather than produces it ; and rather fills the fyftem by increafed abforption, than empties it by increafed fecretion; and may hence be employed with advantage in almoft all cales of debility with cold extremitics, perhaps even in anafarca, and at the approach of death in fevers. In thefe cafes a bath much beneath 98 degrecs, as of 80 or 85 , might do injury, as being a cold-bath compared with the heat of the body, though fuch a bath is generally called a warm one.

The activity of the fyftem thus produced by a bath of 98 degrees of heat, or upwards, does not feem to render the patients liable to take cold, when they come out of it; for the fyftem is lefs inclined to become torpid than before, as the warmth thus acquired by communication, rather than by increafed action, continues long without any confequent chillnefs. Which accords with the obfervation of Dr. Fordyce, mentioned in Sup. I. 5. 1. who fays, that thofe who are confined fome time in an atmofphere of 120 or 130 degrees of heat, do not feel cold or look pale on coming into a temperature of 30 or 40 degrees; which would produce great palenefs and fenfation of coldnefs in thofe, who had been fome time confined in an atmofphere of only 86 or 90 degrees of heat. Treatife on Simple Fever, p. 168.

Hence heat, where it can be confined on a torpid part along with moifture, as on a fcrofulous tumour, will contribute to produce fuppuration or refolution. This is done by applying a warm poultice, which fhould be frequently repeated; or a plafter of refin, wax, or fat; or by covering the part with oiled filk; both which laft prevent the perfpirable matter from efcaping as well as the heat of the part, as there fubftances repel moifture, and are bad conductors of heat. Another great ule of the ftimulus of heat is by applying it to torpid ulcers, which are generally termed ferofulous or fcorbutic, and are much eafier inclined to heal, when covered with Several folds of flannel.

Mr. . had for many months been afflicted with an ulcer in perineo, which communicated with the urethra, through which a part of his urine was daily evacuated with confiderable pain; and was reduced to a great degrec of debility. The ufed a hot-bath of 96 or 98 degrees of heat every day for half an hour during about fix months. By this agreeable fimulus repeated thus at uniform.
form times not only the ulcer healed, contrary to the expectation of his friends, but he acquired greater he:lth and ftrength, than he had for fome years previoully experienced.

Mrs. - was affected with tranfient pains, which were called nervous fpafins, and with great fear of dileafes which fhe did not labour under, with cold extremitics, and general debility. She uled a hot-bath every other day of 96 degrees of heat for about four months, and recovered a good fate of health, with greater ftrength and coirrage, than fhe had poffeffed for many months before.

Mr. Z. a gentleman about 65 years of age, had lived rather intemperately in refpect to vinous potation, and had for many years had annual vifits of the gout, which now became irregular, and he appeared to be lofing his freength, and beginning to feel the effects of age. He ufed a bath, as hot as was agrecable to his fenfations, twice a week for about a year and half, and greatly recovered his health and ftrength with lefs frequent and lefs violent returns of regular gout, and is now near 80 years of age.

When Dr. Franklin, the Ancrican philofopher, was in England many years ago, I recommended to him the ufe of a warm-bath twice a week to pirevent the too fpeedy accers of old age, which he then thought that he felt the approach of, and I have been intormed, that he continued
the ufe of it till near his death, which was at an advanced age.

All there patients were advifed not to keep themfelves warmer than their ufual habits, after they came out of the bath, whether they went into bed or not; as the defign was not to promote perfpiration, which weakens all conftitutions, and feldom is of fervice to any. Thus a flannel fhirt, particularly if it be worn in warm weather, occafions weaknefs by fimulating the fkin by its points into too great action, and producing heat in confequence; and occafions emaciation by increafing the difcharge of perfpirable matter; and in both thefe refpects differs from the effect of warm bathing, which communicates heat to the fyftem at the fame time that it fimulates it, and caufes abforption more than exhalation.
'Thofe who have remained half an hour in a warm bath, when they have previoufly been exhaufted by exercife, or abftinence from food or fluids, have abforbed fo much as to increafe their weight confiderably. Dr. Jurin found an increafe of weight to 18 ounces by flecping in a cool room after a day's exercife and abfinence, fo much in that fituation was abforbed from the atmofphere. But it has latcly been obferved by Dr. Rollo and by Dr. Currie, that fome patients did not weigh heavier after coming out of the warm-bath, and being wiped dry: From whence we may conclude, that thele patients were not
previoully in a fate of inannition; or that they had remained fo long in the bath as to lofe fomewhat by the perpetual wafte of the fyftem by digeftion, circulation, and fecretion. And certainly as no watte occurs by the ufe of the ivarm bath, this muft be the "moft harmlefs, confequently the moft falutary of all increafed fimuli. See Clafs I. 1.2.3.
2. The effect of the paffage of an electric fhock through a paralytic limb in caufing it to contract, befides the late experiments of Galvani and Volta on frogs, entitle it to be claffed amongft univerfal ftimulants. Electric fhocks frequently repeated daily for a week or two remove chronical pains, as the pleurodyne chronica, Clafs I. 2. 4. 14. and other chronic pains, which are termed rheumatic, probably by promoting the abforption of fome extravafated material. Scrofulous tumours are fometimes abforbed, and fometimes brought to fuppurate by paffing electric fhocks through them daily for two or three weeks.

Mifs _—, a young lady about eight years of age, had a fiwelling about the fize of a pigeon's egg on her neck a little below her ear, which long continued in an indolent fate. Thirty or forty fmall electric thocks were paffed through it once or twice a day for two or three weeks, and it then fuppurated and healed without difficulty.

For this operation the coated jar of the electric: machine had on its top an electrometer, which meafured the fhocks by the approach of a brafs knob, which commonicated with the external coating to another, which communicated with the internal one, and their difiance was adjuted by a fcrew. So that the fhocks were fo fmall as not to alarm the child, and the aceumulated electrieity was frequently difcharged as the wheel continued turning. Tlie tumour was enelofed between two other brafs knobs, which were fixed on wires, which paffed through glafs tubes; the tubes were cemented in two grooves on a board, fo that at one end they were ncarer each other than at the other, and the knobs were pufhed out fo far as exaclly to include the tumour, as defcribed in the annexed plate, which is about half the fize of the original apparatus.

Inflammations of the eyes without fever are frequently cured by taking a fiream of very finall electric, fparks from them, or giving the electric fparks' to them, once or twice a day for a week or two; that is, the new veffels, which conftitute inflammation in there inirritable conflitutions, are abforbed by the activity of the abforbents induced by the fimulus of the clectric aura. For this operation the cafieft incthod is to fix a pointed wire to a fick of fealing wax, or to an infulating handle of glafs; one end of this wire commuinicates

communicates with the prime conductor, and the point is approached near the inflamed eye in every dircction.
III. Externally the application of cther, and of effential oils, as of cloves or cinnamon, feems to poffers a general ftimulating cffect. As they inftantly relieve tooth-ach, and hiccough, when thefe pains are not in violent degree; and camphor in large doles is faid to produce intoxication ; this 'cffect however I have not becn witnefs to, and have reafon to doubt.

Ether dropped into the ears of fome deafiff people, feems to poffers a two-fold effect, one of diffolving the indurated ear-wax, and the other of fimulating the torpid organ, but it is liable to give fome degree of pain, unlefs it be freed from the fulphurous acid, fome of which arifes along with it in diftillation; to purify it from this material it fhould be rectificd from manganefe. See Clafs I. 2.5.6. Lime added to impure ether may alfo unite with the fulphuric acid, if fuch exifts in it, and form felenite, and fubfide.

The manner in which ether and the effential oil operate on the fyftem when applicd externally, is a curious queftion, as pain is fo immediately relieved by them, that they muft feem to penetrate by the great fluidity or expanfive pro: perty of a part of them, as of their odoriferous exhalation or vapour, and thus fimu-
late the torpid part, and not by their being taken up by the abforbent veffels, and carried thither by the long courfe of circulation; nor is it probable, that thefe pains are relieved by the fympathy of the torpid membrane with the external fkin, which is thus fimulated into action; as it does not fucceed, unlers it is applied over the pained part. Thus there appears to be three different modes by which extraneous bodies may be introduced into the fyftem, befides that of abforption. Jft. By ethereal tranfition, as heat and electricity; 2d. by chemical attraction, as oxygen ; and 3 d. by cxpanfive vapour, as ether and effential oils.
IV. The perpetual neceffity of the mixture of oxygen gas with the blood in the lungs evinces, that it muft act as a ftimulus to the fanguiferous fyftem, as the motions of the heart and arterics prefently ceafe, when animals are immerfed in airs which poffefs no oxygen. It may alfo fubfequently anfwer another important purpofe, as it is probable that the affords it material for the production of the fenforial power ; which is fuppofed to be fecreted in the brain or medullary part of the nerves; and that the perpetual demand of this fluid in refpiration is occafioned by the fenforial power, which is fuppoled to be produced from it, being too fubtle to be long confined in any part of the fyftem.

Another

Another proof of the ftimulant quality of oxygen appears from the increafed acrimony, which the matter of a commion abfeis poffeffes, after it has been expofed to the air of the atmofphere, but not before; and probably all other contagious matters owe thcir fever-producing property to having been converted into acids by their union with oxygen. See Clafs II. 1. 8.
As oxygen penetrates the fine moift membranes of the air-veffels of the lungs, and unites'with the blood by a chemical attraction, as is feen to happen, when blood is drawn into a bafon, the lower furface of the craffamentum is of a very dark red fo long as it is covered from the air by the upper furface, but becomes florid in a fhort time on its being expoled to the atmofphere; the manner of its introduction into the fyftem is not probably by animal abforption but by chemical attraction, in which circumftance it differs from the fluids before mentioned both of heat and electricity, and of ether and effential oils.

As oxygen has the property of paffing through moift animal membranes, as firf difcovered by the great Dr. Prieftley, it is probable it might be of ufe in vibices, and petechiæ in fevers, and in other bruifes; if the fkin over thofe parts was kept moift by warm water, and covered with oxygen gas by means of an inverted glafs, or even by expofing the parts thus moiftened to the atmofphere, as the dark coloured extravafated blood
might thus become florid, and by its inereafe of ftimulus facilitate its reabforption.

Two weak patients, to whom I gave oxygen gas in as pure a ftate as it can eafily be procured from Exeter manganefe, and in the quantity of about four gallons a day, feemed to feel refrefhed, and ftronger, and to look better immediately after refpiring it, and gained ftrength in a fhort time. Two others, one of whom laboured under confirmed hydrothorax, and the other under a permanent and uniform difficulty of refpiration, were not refrefhed, or in any way ferved by the ufe of oxygen in the above quantity of four gallons a day for a fortnight, which I afcribed to the inirritability of the difeafed lungs. For other cafes the reader is referred to the publications of Dr. Beddoes ; Confiderations on the Ufe of Factitious Airs, fold by Johnfon, London.

Its effects would probably have been greater in refpect to the quantity breathed, if it had been given in a dilute fate, mixed with 10 or 20 times its quantity of atmof pheric air, as otherwife much of it returns by expiration without being deprived of its quality, as may be feen by the perfon breathing on the flame of a candle, which it enlarges. See the Treatife of Dr. Beddoes above mentioned.

Mr. Scot in his letters in the Bombay Courier gave the black calciform ore of manganefe in the quantity, he fays, of feveral drachms a day with-
out any inconvenience to a venereal patient, hoping to ferve him by the oxygen contained in that eals. I have formerly given lapis calaminaris to the quantity of 20 grains tivice a day in confumption, without inconvenience, and I fuppofe this calciform ore of zinc, as well as the ruft of iron, may be an union of thofe metals with oxygen, and may probably be given internally with more fafety than calces of lead, which were once 'famous in confumptions. See Clafs II. 1. 5. 2. and Article IV. 2. 7. 1.
V. Thofe paffions, which are attended with pleafurable fenfation, excite the fy ftem into increafed action in confequence of that fenfation, as joy, and love, as is feen by the flufh of the 1kin. Thofe paffions, which are attended with difagrecable fenfation, produce torpor in general by the expenfe of fenforial power occafioned by inactive pain; unlefs volition be excited in confequence of the painful fenfation; and in that cale an increafed activity of the fyftem occurs; thus palenefs and coldnefs are the confequence of fear, but warmth and rednefs are the confequence of anger.
VI. Befides the exertions of the fyftem occafioned by increafed ftimuli, and confequent irritation, and by the paffions of the mind above deferibed, the increaled actions occafioned by exer-
cite belong to this article. Thefe may be divided into the actions of the body in confequence of volition, which is generally termed labour; or fecondly, in confequence of agrecable fenfation, which is termed play or fport ; thirdly, the exercife occafioned by agitation, as in a carriage or on horfeback ; fourthly, that of friction, as with a brufh or hand, fo much ufed in the baths of Turkey; and laftly, the excreife of fivinging.

The firft of thefe modes of exercife is frequently carried to great excefs even amongft our own labourers, and more fo under the lafh of flavery; fo that the body becomes emaciated and finks under either the prefent hardfhips, or by a premature old age. The fecond mode of exercife is feen in the play of all young animals, as kittens, and puppics, and children; and is fo neceffary to their health as well as to their pleafure, that thofe children, which are too much confined from it, not only bceome pale-faced and bloated, with tumid bellies, and confequent worms, but are liable to get habits of unnatural actions, as twitching of their limbs, or fome parts of their countenance ; together with an ill-humoured or difcontented mind.

Agitation in a carriage or on horfeback, as it requires fome little roluntary exertion to preferve the body perpendicular, but much lefs voluntary exertion than in walking, fuems the beft adapted to invalides; who by thefe means obtain exercife principally
principally by the ftrength of the horfe, and do not therefore too much exhauft their own fenforial power. The ufe of friction with a brufh or hand, for half an hour or longer morning and evening, is fill better adapted to thofe, who are redueed to extreme debility; and none of their own fenforial power is thus expended, and affords fomewhat like the warm-bath activity without felf-exertion, and is ufed as a luxury after warm bathing in many parts of Afia.

Another kind of exercife is that of fivinging, which requires fome exertion to keep the body perpendicular, or pointing towards the centre of the fiving, but is at the fame time attended with a degree of vertigo; and is defcribed in Clafs II. 1. 6.7. IV. 2. 1. 10. Sup. I. 3. and 15.

The neceffity of much exercife has perhaps been more infified upon by phyficians, than nature feems to demand. Fciv animals exercife themfelves fo as to induce vifible fiveat, unlefs urged to it by mankind, or by fear, or hunger. And numbers of people in our market towns, of ladies partieularly, with finall fortunes, live to old: age in health, without any kind of exereife of bod \(\xi\), or much activity of mind.

In fummer weak people eannot continue too long in the air, if it ean be done without fatiguc; and in winter they fhould go out feveral times in a day for a few minutes, ufing the cold air like a

\footnotetext{
roL. if.
Gg
cold-
}
cold-bath, to invigorate and render them more hardy.
III. Catalogue of the Incitantia.
1. Papaver fomniferum ; poppy, opium.

Alcohol, wine, beer, cyder.
Prunus lauro-cerafus; laurel, diftilled water from the leaves.
Prunus cerafus; black cherry, ciffilled water from the kernels.
Nicotiana tabacum; tobacco; the effential oil, decoction of the leaf.
Atropa belladonna; dcadly nighthade, the berries.
Datura ftramoneum; thorn-apple, the fruit boiled in milk.
Hyorcyamus reticulatus; henbane, the feeds and leaves.
Cynogloffum ; hounds tongue.
Menifpermum, cocculus; Indian berry.
Amygdalus amarus; bitter almond.
Cicuta; hemlock. Conium maculatum ?
Strychnos nux vomica?
Delphinium ftavifagria?
11. Externally, heat, electricity.
III. Ether, effential oils.
IV. Oxygen gas.
V. Paffions of love, joy, anger.
VI. Labour, play, agitation, friction.

\section*{Art. III. \\ SECERNENTIA:}
I. Those things which increale the irritative motions, which conftitute fecretion, are termed fecernentia; which arë as various as the glands; which they ftimulate into action:
1. Diaphoretics, as aromatic vegetables, effential oils, ether, volatile alcali, neutral falts, antimonial preparations, external heat, exercife, friction, cold water for a time with fubfequent twarmth, blifters, electric flitid.
2. Sialagogues, äs mercury internally, and pyrethrum externally.
3. Expectorants; as fquill, onions, gum ammoniac, feneka root, mucilage: fome of thefe increafe the pulmonary perfpiration; and perhaps the pulmonary mucus.
4. Diuretics, as neutral falts, fixed alcali, balfams, refins; afparagus, cantharides.
5. Cathartics of the mild kind; as fena, jalap; neutral falts, manna. They increafe the fecretions of bile, pancreatic juice; and inteftinal micus.
6. The mucus of the bladder is increafed by cantharides, and perhaps by oil of turpentine.
7. The mucus of the rectum by aloc internally, by clyfters and fuppofitories externally.
8. The mucus of the cellular membrane is increafed by blifters and finapifins.
9. 'ithe mucus of the noftrils is increafed by errhines of the milder kind, as marum, common fnuff.
10. The feeretion of tears is increafed by volatile falts, the vapour of onions, by gricf, and joy.
11. All thofe medicines inereafe the heat of the body, and remove thofe pains, whieh originate from a defect of motion in the veffels, whieh perform fecretion; as pepper produces a glow on the fkin, and balfam of Peru is faid to relieve the flatulent colic. But thefe medicines differ from the preceding clafs, as they neither induce coftivenefs nor deep coloured urine in their ufual dofe, nor intoxication in any dofe.
12. Yet if any of thefe are ufed unneceffarily, it is obvious, like the ineitantia, that they muft contribute to fhorten our lives by fooner rendering peculiar parts of the fyftem difobedient to their natural ftimuli. Of thofe in daily ufe the great
great excefs of common falt is probably the moft pernicious, as it cnters all our cookery, and is probably one caufe of ferofula, and of feafcurvy, when joined with other caufes of dcbility. See Botanic Garden, Part II. Canto IV. line 221. Spices taken to cxeefs by ftimulating the ftomach, and the veffels of the flain by affociation, into unneceffary action, contribute to weaken thefe parts of the fyftem, but are probably lefs noxious than. the general ule of fo much falt.

\section*{II. Observations on the Secerventia.}
I. I. Some of the medicines of this clafs produce abforption in fome degree, though their prineipal effect is exerted on the fecerning part of our fyftem. We fhall have occafion to obferve a fimilar circumfiance in the next clafs of medicines termed' Sorbentia; as of thefe fome cxert their effects in a fmaller degree on the fecerning fyftem. Nor will this furprife any one, who has obferved, that all natural objects are prefented to us in a fiate of combination ; and that hence the materials, which produce there diffcrent cffects, are frequently found mingled in the fame vegetable. Thus the pure aromatics increafc the action of the veffels, which fecrete the perfpirable matter; and the pure aftringents increafe the action of the veffels, which abforb the mucus from the lungs, and other cavities of
\[
\text { G g } 3
\]
the
the body; hence it muft happen, that nutmeg; which poffeffes both thefe qualities, fhould have the double effect above mentioned.

Other drugs have this double effect, and belong either to the clafs of Sccernentia of Sorbentia, according to the dofe in which they are exhibited. Thus a fmall dofe of alum increafes abforption, and induces coftivenefs; and a large one increafes the fecretions into the inteftinal canal \({ }_{2}\) and becomes cathartic. And this accounts for the conftipation of the belly left after the purgative quality of rhubarb ceafes, for it inereafes abforption in a fmaller dofc, and fecretion in a grcater. Hence when a part of the larger dofe is carried out of the habit by ftools, the fmall quan. tity which remains induces coftivenefs. Hence rhubarb exhibited in frnall dofes, as two or three grains twice a day, ftrengthens the fyftem by increafing the action of the abforbent veffels, and of the inteftinal canal.
2. Diaphoretics. The perfpiration is a fecretion from the blood in its paffage through the capillary veffels, as other fecretions are produced in the termination of the arteries in the various glands. After this fecretion the blood lofes its florid colour, which it regains in its paffage through the lungs; which evinces that fomething pefides water is fecreted on the fkins of animals.

No ftatical experiments can afcertain the quan-
tity of our perfpiration; as a continued abforption of the moifture of the atmofphere exifts at the fame time both by the cutaneous and pulmonary lymphatics.
3. Every gland is capable of being excited into greater exertions by an appropriated ftimulus applied either by its mixture with the blood immediately to the fecerning veffel, or applied externally to its excretory duct. Thus mercury internally promotes an increafed falivation, and pyrethrum externally applied to the excretory - ducts of the falival glands. Aloes ftimulate the rectum internally mixed with the circulating blood; and fea-falt by injection externally. Now as the capillaries, which fecrete the perfpirable matter, lie near the furface of the body, the application of external heat acts immediately on their excretory ducts, and promotes perfpiration; internally thofe drugs which poffefs a fragrant effential oil, or fpiritus rector, produce this effect, as the aromatic vegetables, of which the number is very great.
4. It muft be remembered, that a due quantity of fome aqueous vehicle muft be given to fupport this evacuation; otherwife a burning heat without much vifible fweat muft be the confequence. When the fkin acquires a degree of heat much above 108 as appears by Dr. Alex-
ander's experiments, no vifible fweat is produced; whieh is owing to the grcat heat of the fkin evaporating it as hafily, as it is fecreted; and, where the fiveat is fecreted in abundance, its evaporation cannot carry off the cxuberant heat, like the vapour of boiling water; becaufe a great part of it is wiped off, or abforbed by the bedclothes; or the air about the patient is not changed fufficiently often, as it becomes faturated with the perfpirable matter. And hence it is probable, that the wafte of perfpirable matter is as great, or greater, when the fkin is hot and dry, as when it ftands in drops on the fkin; as appears from the inextinguifhable thirft.

Hence Dr. Alexander found, that when the heat of the body was greater than 108 , nothing produced fweats but repeated dranghts of cold swater; and of warm fluids, when the heat was much below that degree. And that cold water which proeurcd fweats infiantaneoufly when the heat was above 108, ftopped them as ecrtainly when it was bclow that heat; and that flannels, wrung out of warm water and wrapped round the legs and thighs, were then moft certainly productive of fweats.
5. The diaphorcties arc all faid to fucceed mueh better, if given early in the morning, about an hour before fun-rife, than at any other time; which is owing to the great exeitability of
cvery part of the fyftem after the fenforial power has been accumulated during fleep. In thofe, who have hectie fever, or the febricula, or nocturnal fever of debility, the morning fiweats are owing to the decline of the fever-fit, as explained in Sect. XXXII. 9. In fome of thefe patients the fiveat does not occur till they awake; becaufe then the fyftem is ftill more excitable than during fleep, becaule the affiftance of the voluntary power in refpiration facilitates the general circulation. Sec Clafs I. 2. 1. 3.,
6. It muft be obferved, that the flin is very dry and hard to the toueh, where the abforbents, whieh open on its furface, do not act ; as in fome dropfics, and other difeafes attended with great thirft. This drynefs, and flrivelled appearance, and roughnefs, are owing to the mouths of the abforbents being empty of their accuftomed fluid, and is diftinguifhable from the drynefs of the flim above mentioned in the hot fits of fever, by its not being attended with heat.

As the heat of the fkin in the ufual temperature of the air always evinces an increafed perfpiration, whether vifible or not, the heat being produced along with the inereafe of fecretion ; it follows, that a defect of perfiration can only exift, when the fkin is cold.
7. Volatile
7. Volatile alcali is a very powerful diaphoretic, and particularly if cxhibited in wine-whey; twenty drops of fpirit of harthorn every half hour in half a pint of wine-whey, if the patient be kept in a moderately warm bed, will in a few hours elicit moft profufe fweats.

Neutral falts promote invifible perfpiration, when the fkin is not warmed much externally, as is evinced from the great thirft, which fuecceds a meal of falt provifions, as of red herrings. When thefe are fufficiently diluted with water, and the fkin kept warm, copious fweats without inflaming the habit, are the confequence. Half an ounce of vinegar faturated with volatile alcali, taken every hour or two hours, well anfwers this purpofe; and is preferable perhaps in general to all others, where fweating is advantageous. Boerhave mentions one cured of a fever by eating sed-herrings or anchovies, which, with repeated draughts of warm water or tea, would I fuppofe produce copious perfpiration.

Antimonial preparations have alfo been of late much ufed with great advantage as diaphoretics. For the hiftory and ufe of thefe preparations I fhall refer the reader to the late writers on the Materia Mediea, only obferving that the fiomach becomes fo foon habituated to its ftimulus, that the fecond dofe may be confiderably inereafed, if the firft had no operation.

Where it is advifable to procure copious fweats,
the emetics, as ipecacuanha, joincd with opiates, as in Dover's powder, produce this effect with greater certainty than the above.
s. We muft not difmifs this fubject without obfcrving, that perfiriation is defigned to keep the : Rin flcxile, as the tears are intended to clean and lubricate the eye; and that neither of thefe fluids can be confidered as excretions in their natural fate, but as fecretions. See Clafs I. 1. 2. 3. And that thereforc the principal ufe of diaphoretic medicines is to warm the fkin, and thence in confequence to produce the natural degrec of infenfible perfpiration in languid habits.
9. When the fkin of the extremitics is cold, which is always a fign of prefent debility, the digeftion becomes frequently inpaíred by affociation, and cardialgia or heartburn is induced froms the vinous or acetous fcrmentation of the aliment. In this difeafe diaphoretics, which have been called cordials, by their ation on the fomach reftorc its exertion, and that of the cutaneous capillaries by their affociation with it, and the fkin becomes warm, and the digeftion more vigorous.
10. But a blifter acts with more permanent and certain effect by fimulating a part of the fkin, and thence affecting the wholc of it, and of
the ftomach by affociation, and thence removes the moft obftinate heartburns and vomitings. From this the principal ufe of blifters is underftood, which is to invigorate the exertions of the arterial and lymphatie veffels of the fkin, producing an increafe of infenfible perfpiration, and of cutancous abforption; and to increafe the action of the flomach, and the eonfequent power of digeftion; and thence by fympathy to excite all the other irritative motions: henec they relieve pains of the eold kind, which originate from defect of motion; not from their introdueing a greater pain, as fome have imagined, but by ftimulating the torpid veffels into their ufual action; and thenee inereafing the action and confequent warmth of the whole fkin, and of all the parts which are affociated with it.
II. 1. Sialagogues. The preparations of mercury confift of a folution or eorrofion of that metal by fome aeid; and, when the dofe is known, it is probable that they are all equally efficacions. As their principal ufe is in the eure of the venereal clifeafe, they will be mentioned in the eataloguc amongft the forbentia. Where falivation is intended, it is much forwarded by a warm room and warn clotles; and prevented by expofing the patient to his ufual babits of cool air and drefs, as the merenry is then more liable to go off by the bowels.
2. Any
2. Any acrid drug, as pyrethrum, held in the mouth acks as a fialagogue externally by dimulating the exeretory ducts of the falivary glands; and the filiqua hirfuta applied externally to the parotid gland, and even hard fubftances in the ear, are faid to have the fame effect. Maftieh chewed in the mouth emulges the falivary glands.
3. The unwife euftom of chewing and fmoaking tobaeco for many hours in a day not only injures the falivary glands, produeing drynefs in the mouth when this drug is not ufed, but I fufpect that it allo produces fcirrhus of the panereas. The ufe of tobacco in this immoderate degree injurcs the power of digeftion, by oeeafroning the patient to fipit out that faliva, whieh he ought to livallow; and hence produces that flatulency, whieh the vulgar unfortunately take it to prevent. The mucus, which is brought from the fauces by hawking, fhould be fpit out, as well as that coughed up from the lungs; but that which comes fpontancoufly into the mouth from the falivary glands, fhould be fwallowed mixed with our food or alone for the purpores of digeftion. Sce Clafs I. 2. 2.7.
III. 1. Expectorants are fuppofed to inereafe the fecretion of mueus in the branches of the windpipe, or to increafe the perppiration of the
lungs feereted at the terminations of the bronchial artory.
2. If any thing promotes expectoration toward the end of peripneumonics, when the inflammaz tion is reduced by bleeding and gentle catharties, fmall repeated blifiers about the clieft, with tepid aqueous and mucilaginous or oily liquids, are more advantageous than the medicines generally enumerated under this head; the blifters by fitmulating into action the veffels of the fling produce by affociation a greater activity of thofe of the mucous membrane, which lines the branches of, the windpipe, and air-cells of the lungs; and thus after evacuation they promote the abforption of the mucus and confequent healing of the inflamed membrane, while the diluting liquids prevent this mucus from becoming too vifcid for this purpofe, or facilitate its expuition.

Blifters, one at a time, on the fides or back, or on the fternum, are alfo ufeful towards the end of peripneumonies, by preventing the evening accefs of cold fit; and thence preventing the hot fit by their ftimulus on the fkin; in the famic manner as five drops of laudanum by its ftimulus on the ftomach. For the increafed actions of the veffels of the fkin or ftomach excite a greater quantity of the fenforial power of aflociation, and thus prevent the torpor of the other parts of
the fyftem; which, when patients are debilitated, is fo liable to return in the evening.
3. Warm bathing is of great fervice towards the end of peripneumony to promote expectoration, efpecially in thofe children who drink too little aqueous fluids, as it gently increafes the action of the pulmonary capillaries by their confent with the cutaneous ones, and fupplies the fyftem with aqueous fluid, and thus dilutes the fecreted mucus.

Some have recommended oil externally around the cheft, as well as internally, to promote expectoration;' and upon the nofe, when its mucous membrane is inflamed, as in common catarrl.
IV. 1. Diuretics. If the fkin be kept warm, moft of thefe medicines promote fiveat inftead of urine; and if their dofe is enlarged, mon of them become cathartic. Hence the neutral falts are ufed in general for all thefe purpofes. Thofe indeed, which are compofed of the vegetable acid, are moft generally ufed as fudorifics; thofe with the nitrous acid as diuretics; and thofe with the vitriolic acid as cathartics: while thofe united with the marine acid enter our common nutriment, as a more generai ftimulus. All thefe increafe the acrimony of the urine, hence it is retained a lefs time in the bladder; and in conm fequence lefs of it is reabforbed into the fyftem,
and the apparent quantity is greatcr, as more is evacuated from the bladder; but it is not certain from thence, that a greater quantity is fecreted by the kidneys. Hence nitre, and other neutral falts, are erroncoufly given in the gonorrhea; as they augment the pain of making water by their ftimulus on the exeoriated or inflamed urcthra. They are allo erroneoufly given in catarrhs or coughs, where the difcharge is too thin and faline, as they incrcale the frequency of coughing.
2. Balfam of Copaiva is thought to promote urine more than the other native balfams; and common refin is faid to act as a powerful diuretic in horfes. Thefe are alfo much recommendcd in glects, and in fluor albus, perhaps more than they deferve; they give a violet fmell to the urinc, and hence probably increafe the fecretion of it.

Calcincd egg-fhclls are faid to promote urine, perhaps from the phofphoric acid they contain.
3. Cold air and cold watcr will increafe the quantity of urine by decreafing the abforption from the bladder; and neutral and alkalious falts and cantharides by ftimulating the neck of the bladder to difcharge the urine as foon as fecretcd; and alcohol, as gin and rum, at the begimning of intoxication, if the body be kept cool, occafion
much
much urine by inverting the urinary lymphatics, and thence pouring a fluid into the bladder, whicli never paffed the kidneys. But it is probable, that thofe medicines, which give a fcent to the urine, as the balfams and refins, but particularly afparagus and garlic, are the only drugs, which truly increafe the fecretion of the kidneys. Alcohol however, ufed as above mentioned, and perhaps great dofes of tincture of cantharides, may be confidered as draftic diuretics, as they pour a fluid into the bladder by the retrograde action of the lymphatics, which are in great abundance fread about the neck of it. See Sect. XXIX. 3.
V. Mild cathartics. The ancients believed that fome purges evacuated the bilc, and hence were termed Cholagogues; others the lymph, and were termed Hydragogues; and that in fhort each cathartic felected a peculiar humour, which it difcharged. The moderns have too haftily rejected this fyftem; the fubject well deferves further obfervation.

Calomel given in the dofe from ten to twenty grains, fo as to induce purging without the affiflance of other drugs, appears to me to particularly increafe the fecretion of bile, and to evacuate it ; aloe feems to increafe the fecretion of the inteflinal mucus; and it is probable that the pancreas and fpleen may be peculiarly ftimuvol. II.

Hh
lated
lated into action by fome other of this tribe of medicines; whilft others of them may fimply ftimulate the inteftinal canal to evacuate its contents, as the bile of animals. It muft be remarked, that all thefe cathartic mcdicines are fuppofed to be exhibited in their ufual dofes, otherwifc they become draftic purges, and are treated of in the Clafs of Invertentia.
VI. The mucus of the bladder is feen in the urine, when cantharides have been ufed, cither internally or externally, in fuch dofes as to induce the ftrangury. Spirit of turpentine is faid to have the fame effect. I have given above a dram of it twice a day floating on a glafs of water in chronic lumbago without this effect, and the paticnt gradually recovercd. Phofphorus may poffibly affect the mucous glands of the urethra like cantharides. See Impotentia, Clafs II. 2. 2. 3.
VII. Aloe given internally feems to act chiefly on the rectum and Sphincter ani, producing tenefmus and piles. Externally in clyftcrs or fuppofitories, common falt feems to act on that bowel with greater certainty. But where the thread worms or afcarides cxift, 60 or 100 grains of alocs reduced to powder and boiled in a pint of gruel, and ufed as a clyfter twiec a week for three months, has frequently deftroyed them. Might

Might not the hairs of filiqua hirfuta be ufed in an injection for this purpofe? See Clafs I. 1. 4. 14.
VIII. The external application of cantharides by ftimulating the excretory ducts of the capillary glands produces a great fecretion of fubcutaneous mucus with pain and inflammations which mucaginous fluid, not being able to permeate the cuticle, raifes it up; a fimilar fecretion and clevation of the cuticle is produced by actual fire; and by cauftic materials, as by the application of the juice of the root of white briony, or bruifed muftard-feed. Experiments are wanting to introduce fome acrid application into practice inftead of cantharides, which might not induce the ftrangury.

Muftard-feed alone is too acrid, and if it be fuffered to lie on the fkin many minutes is liable to produce a flough and confequent ulcer, and fhould therefore be mixed with flour when applied to cold extremities. Volatile alkali properly diluted might fimulate the fkin without inducing ftrangury.
IX. The mild errhines are fuch as moderately fimulate the membrane of the noftrils, \(f 0\) as to increafe the fecretion of nafal mucus; as is feen in thofe, who are habituated to take fnuff. The ftronger errhines are mentioncd in Art. V.2.3.
X. The fecretion of tears is increafcd either by applying acrid fubftances to the eye; or acrid vapours, which ftimulate the excretory duct of the lacrymal gland; or by applying them to the noftrils, and ftimulating the excretory duct of the lacrymal fack, as treated of in the Section on Inftinct.

Or the fecretion of tears is increafed by the affociation of the motions of the excretory duct of the lacrymal fack with ideas of tender pleafurc, or of hopelefs diftrefs, as cxplained in Sec?. XVI. 8. 2. and 3.
XI. The feeretion of fenforial power in the brain is probably increafcd by opium or wine, becaufe when taken in certain quantity an immediate increafc of ftrength and activity fucceeds for a time, with confequent debility if the quantity taken be fo great as to intoxicate in the leaft degree. The neceflity of perpetual refpiration thews, that the oxygen of the atmofphere fupplies the fource of the fpirit of animation; which is conftantly cxpended, and is probably too fine to be long contained in the nerves after its production in the brain. Whence it is probable, that the refpiration of oxygen gas mixed with common air may increafe the fecretion of fenforial power ; as indecd would appear from its exhilarating effect on moft paticnts.

Art. III. 3. I. I. SECERNENTIA.
III. Catalogue of the Secernentia.
I. Diaphoretics.
1. Amomum zinziber, ginger. Caryophyllus aromaticus, cloves. Piper indicum, peppcr. Capficum. Cardamornum. Pimento, myrtus pimenta. Canclla alba. Serpentaria virginiana, ariftolochia ferpontaria, guaiacum. Saffafras, laurus faffafras. Opium. Wine.
2. Effential oils of cinnamon, laurus cinnamomum. Nutmeg, myriftica mofchata. Cloves, caryophyllus aromaticus. Mint, mentha. Camphor, lạurus camphora. Ether.
3. Volatile falts, as of ammoniac and of hartfhorn. Sal cornu ccrvi.
4. Neutral falts, as thofe with vegetable acid; or with marine acid, as common falt. Halcx, red-herring, anchovy.
5. Preparations of antimony, as emctic tartar, antimonium tartarizatum, wine of antimony. Jamcs's powder.
6. Exterral applications. Blifters. Warm hath. Warm air. Excrcife. Friction.
7. Cold water with fubfequent warmth.
II. Sialagogucs. Preparations of mercury, hydrargyrus. Pyrcthrum, anthemis pyrethrum, tobacco, clovcs, pepper, cowhage, II h 3 ftizolobiun ftizolobium filiqua hirfuta. Maftich, piftacia lentifcus.
III. Expećtorants.
1. Squill, fcilla maritima, garlic, leck, onion, allium, afafoetida, ferula afafortida, gum ammoniac, benzoin, tar, pix liquida, balfam of Tolu.
2. Root of feneka, polygala fcneka, of elecampane, inula helenium.
3. Marfh-mallow, althæa, coltsfoot, tuffilago farfara, gum arabic, mimofa nilotica, gum tragacanth, aftragalus tragacantha. Decoction of barley, hordeum diftichon. Expreffod oils. Spermaceti, foap. Extract of liquorice, glycyrrhiza glabra. Sugar. Honey.
4. Extcrnally blifters. Oil. Warm bath.
IV. Mild diuretics.
1. Nitre, kali acetatum, other ncutral falts.
2. Fixcd alkali, foap, calcined egg-fhells.
3. Turpentine. Balfam of Copaiva. Rcfin. Olibanum.
4. Afparagus, garlic, wild daucus. Parfley, apium. Fennel, fæniculum, parcira brava, ciffampelos?
5. Extcrnally cold air, cold watcr.
6. Alcohol. Tincture of cantharides. Opium,
1. Swcet fubacid fruits. Prunes, prunus domeftica. Caffia fiftula. Tamarinds, cryftals of tartar, unrefined fugar. Manna. Honey.
2. Whey of milk, bile of animals.
3. Neutral falts, as Glauber's falt, vitriolated tartar, fea-water, magnefia albáa, foap.
4. Gum guaiacum, Balfam of Peru. Oleum ricini, caftor-oil, oil of almonds, oil of olives, fulphur.
5. Senna, caffia fenna, jalap, aloe, rhubarb, rheum palmatum.
6. Calomel. Emetic tartar, antimonium tartarizatum.
VI. Secretion of mucus of the bladder is increafed by cantharides, by fpirit of turpentine ? Phofphorus?
VII. Secretion of mucus of the rectum is increafed by aloe internally, by various clyfters and fuppofitories externally.
VIII. Secretion of fubcutaneous mucus is increafed by blifters of cantharides, by application of a thin flice of the frefh root of white briony, by finapifms, by root of horle-radifh, cochlearia armoracia. Volatilc alcali.
IX. Mild crrlines. Marjoram. Origanum. Marum, tobacco.
X. Secretion of tears is increafed by vapour of ficed onion, of volatile alcali. By pity, or ideas of hopelefs diftrefs.
XI. Secretion of fenforial power in the brain is probably increafed by opium, by wine, and perhaps by oxygen gas added to the common air in refpiration.

\section*{Art. IV.}

\section*{SORBENTIA.}
I. Those things which increafe the irritative motions, which conftitute abforption, are termed forbentia; and are as various as the abforbent veffels which they ftimulate into action.
1. Cutaneous abforption is increafed by auftere acids, as of vitriol; hence they are believed to check colliquative fweats, and to check the eruption of fmall-pox, 'and contribute to the cure of the itch, and tinea; hence they thicken the faJiva in the mouth, as lemon-juice, crab-juice, floes.
2. Abforption from the mucous membrane is increafed by opium, and Pcruvian bark, internally
nally; and by blue vitriol externally. Hence the expectoration in coughs, and the mucous difcharge from the urcthra, arc thickened and leffened.
3. Abforption from the cellular membrane is promoted by bitter vegetables, and by emetics, and cathartics. Hence matter is thickened and leffened in ulcers by opium and Peruvian bark; and ferum is abforbed in anafarca by the operation of emctics and cathartics.
4. Venous abforption is increafed by acrid vegetables; as water-crefs, cellery, horfe-radifh, muftard. Hence their ufe in fea-fcurvy, the vibiccs of which are owing to a defect of venous abforption ; and by external ftinulants, as vinegar, and by electricity, and perhaps by oxygen.
5. Inteftinal abforption is increafed by aftringent vegetables, as rhubarb, galls; and by carthy falts, as alum; and by argillaceous and calcareous earth.
6. Hepatic abforption is increafed by metallic falts, hence calomel and fal martis are fo. cfficacious in jaundice, worms, chlorofis, dropfy.
7. Venercal yirus in ulcers is abforbed by the ftimulus
ftimulus of mercury; henee they heal by the ufe of this medicine.
8. Venefection, hunger, thirft, and violent evacuations, increafe all abforptions; hence fweating produces coftivenefs.
9. Externally bitter aftringent vegetables, carthy and metallic falts, and bandages, promote the abforption of the parts on which they are applied.
10. All thefe in their ufual dofes do not increafe the natural heat ; but they induce coftivenefs, and deep-coloured urine with earthy fediment.

In greater dofes they invert the motions of the ftomach and lacteals; and hence vomit or purge, as carduus benedictus, rhubarb. They promote perfpiration, if the fkin be kept warm ; as camomile tea, and teftaceous powders, have been ufed as fudorifics.

The preparations of antimony vomit, purge, or fiveat, either according to the quantity exhibited, or as a part of what is given is evacuated. Thus a quarter of a grain of emetic tartar (if well prepared) will promote a diaphorefis, if the fkin be kept warm; half a grain will procure a ftool or two firf, and fweating afterward; and a grain

Art.IV.2.i.i, SORBENTIA.
will generally vomit, and then purge, and laftly fiweat the patient. In lefs quantity it is probable, that this medicinc acts like other metallic falts, as fiecl, zinc, or copper in fmall dofes; that is, that it furengthens the fyftem by its ftimulus. As camomile ard rhubarb in different dofes vomit, or purge, or act as ftimulants \(f o\) as to ftrengthen the fyitem.

Some of the medicines of this clafs of forbentia have been termed tonics by fome authors, as giving due tone to the animal fibrc. But it fhould be obferved, that tone is a mechanical term, applicable only to mufical frings, and like bracing and relaxation, cannot be applied to animal life except metaphorically. The fame may be abferved of the word reaction, ufed by fome modern authors, which in its proper fignification is a mechanical term inapplicable to the laws of life except metaphorically.

\section*{II. Observations on the Sorbentia.-}
1. 1. As there is great difference in the apparent ftructure of the various glands, and of the fluids which they felect from the blood, thefe glands muft poffcfs different kinds of irritability, and are therefore ftimulated into ftronger or unnatural actions by different articles of the materia medica, as fhewn in the fecernentia. Now
as the abforbent veffels are likewife glands, and drink up or felect different fluids, as ehyle, water, mucus, with a part of every different fecretion, as a part of the bile, a part of the faliva, a part of the urine, \&ce. it appcars, that thefe abforbent veffels muft likewife poffefs different kinds of irritability, and in confequence muft require different articles of the materia modica to excite them into unufual action. This part of the fubject has been fo little attended to, that the candid reader will find in this article a great deal to excufe.

It was obferved, that fome of the fecernentia did in a lcfs degree inereafe abforption, from the combination of different properties in the fame regetable body; for the fame reafon fome of the clafs of forbentia produce fecretion in a lefs dcgree, as thofe bitters which have alfo an aroma in their compofition; thefe are known from their increafing the heat of the fyftem above its ufual degrec.

It muft alfo be noted, that the actions of every part of the abforbent fyftem are fo affociated with each other, that the drugs which ftimulate onc branch increafe the action of the whole; and the torpor or quiefcence of one branch weakens the exertions of the whole; or when one branch is excited into fronger action, fome other branch has its actions weakencd or inverted. Yct though peculiar branches of the abforbent fyi-
tem are flimulated into action by peculiar fubflances, there are other fubftances which feem to ftimulate the whole fyfiem, and that without immediately increafing any of the fecretions; as thofe bitters which poffefs no aromatic fcent, at the head of which ftands the faned Peruvian bark, or cinchona.
2. Cutaneous abforption. I havc heard of fome experiments, in which the body was kept cold, and was thought to abforb more moifture from the atmofplicre than at any other time. This however cannot be determined by fatical experinients; as the capillary refiels, which fecrete the perfipirable matter, muft at the fame time have been benumbed by the cold ; and from their inaction there could not have been the ufual wafte of the weight of the body; and as all other mufcular excrtions are beft performed, when the body poffeffes its ufual degree of warmth, it is conclufive, that the abforbent fyftem thould likervife do its office belt, when it is not benumbed by extcrial cold.
The auftere acids, as of vitricl, lemon-juice, juice of crabs and floes, ftrengthen digefion, and prevent that propenfity to fiveat fo ufual to weak convalefcents, and diminifh the colliquative fiweats in hectic fevers; all which are owing to their incecafing the action of the external and internal cutancous abforption. Hence vitriolic acid is or too copious cruption, which it effects, by increafing the cutaneous abforption. Vincgar, from the quantity of alcohol which it contains, exerts a contrary effect to that here deferibed, and belongs to the ineitantia; as an ounce of it promotes fiveat, and a flufhing of the flin; at the fame externally it acts as a venous abforbent, as the lips beeome pale by moiftening them with it. And it is faid, when taken internally in great and continued quantity, to induce palences of the fkin, and foftnefs of the bones.

The fweet vegetable acids, as of feveral ripe fruits, are among the torpentia; as they are lefs ftimulating than the general food of this elimate, and are hence ufed in inflammatory difeafes.

Where the quantity of fluids in the fyftem is much leffened, as in hectic fever; which has been of fome continuance, or in fpurious peripneumony, a grain of opium given at night will fometimes prevent the appearance of fiveats; whieh is owing to the ftimulus of opium inereafing the actions of the cutancous abforbents, more than thofe of the fecerning veffels of the fkin. Whenee the fecretion of perfpirable matter is not decreafed, but its appearance on the flin is prevented by its more facile abforption.
3. There is one kind of itch, which feldom appears between the fingers, is the leaft infections,
and moft difficult to cradicatc, and which has its cure much facilitated by the internal ufe of acid of vitriol. This difeafe confifts of fmall uleers in the fkin, which are healed by whatever increafes the cutaneous abforption. The external application of fulphur, mercury, and acrid vegetables, acts on the fame principle; for the animalcula, which are feen in thefe puftulcs, are the effect, not the caufe, of them; as all other ftagnating animal fluids, as the femen itfelf, abounds with fimilar microfcopic animals. See Dyfenterý, Clafs II. 1.3. 18.
4. Young children have fometimes an eruption upon the head called tinea, which difcharges an acrimonious ichor inflaming the parts, on which it falls. This eruption I have feen fubmit to the internal ufe of vitriolic acid, when only wheat-flour was applied externally. This kind of eruption is likewife frequently cured by teftaceous powders; two materials fo widely different in their chemical properties, but agreeing in thcir power of promoting cutancous abforption.
II. Abforption from the mucous mombrane is increafed by applying to its furfacc the auftere acids, as of vitriol, lemon-juicc, crab-juice, floes. When thesc are taken into the mouth, they immediately thicken, and at the fame time leffen the quantity of the faliva; which laft circumftance cannot be owing to their coagulating the faliva, but to their increafing the abforption of the thinner parts of it. So alum applied to the tip of the tongue does not flop in its action there, but independent of its diffufion it induces cohection and corrugation over the whole mouth. (Cullen's Mat. Med. Art. Affringentia.) Which is owing to the affociation of the motions of the parts or branches of the abforbent fyftem with each other.

Abforption from the mueous membrane is inereafed by opium taken internally in finall dofes more than by any other medicine, as is feen in its thickening the expectoration in coughs, and the difcharge from the noftrils in catarrh, and perhaps the difcharge from the urethra in gonorrhea. The bark feems next in power for all thefe purpofes.

Externally flight folutions of blue vitriol, as two or three grains to an ounce of water, applied to ulcers of the mouth, or to chancres on the glans penis, more powerfully induce them to heal than any other material.

Where the lungs or urethra are inflamed to a confiderable degree, and the abforption is fo great, that the mucus is already too thick, and adheres to the membrane from its vifeidity, opiates and bitter vegetable and auftere aeids are improper; and mucilaginous diluents fhould be ufed in their fead with venefection and torpentia.
III. 1. Ab-
III. 1. Abforption from the cellular membrane, and from all the other cavities of the body, is too flowly performed in fome conftitutions; hence the bloated pale complexion; and when this occurs in its greateft degree, it becomes an univerlal droply. Thefe habits are liable to intermittent fevers; hyfteric paroxyfms, cold extremities, indigeftion, and all the fymptoms of debility.

The abforbent fyftem is more fubject to torpor or quiefcence than the fecerning fyftem, both from the coldnefs of the fluids which are applied to it, as the moifture of the atmofphere, and from the coldnefs of the fluids which we drink; and alfo from its being ftimulated only by intervals, as when we take our food; whereas the fecerning fyftem is perpetually excited into action by the warm circulating blood; as explained in Sect. XXXII.
2. The Peruvian bark, camomile flowers, and other bitter drugs, by ftimulating this cellular branch of the abforbent fyftem prevents it from becoming quiefcent; hence the cold paroxyfins of thofe agues, which arife from the torpor of the cellular lymphatics, are prevented, and the hot fits in confequence. The patient thence prefervés his natural heat, regains his healthy colour, and his accuftomed firength.

Where the cold paroxyfin of an ague originates internal vifeus, the addition of fteel to vegetable bitters, and efpecially after the ufe of one dofe of calomel, much advances the cure.

And where it originates in any part of the fecerning fyftem, as is probably the cafe in fome kinds of agues, the addition of opium in the dofe of a grain and half, given about an hour before the aceef of the paroxyfm, or mixed with chalybeate and bitter medicines, enfures the cure. Or the fame may be effected by wine given inftead of opium before the paroxyfm, fo as nearly to intoxicate.

Thefe three kinds of agues are thus diftinguifhed ; the firft is not attended with any tumid or indurated vifcus, which the people eall an ague cak., and which is evident to the touch. The fecond is aecompanied with a tumid vifeus; and the laft has generally, I believe, the quartan type, and is attended with fome degree of arterial debility.

The bark of the broad-leaved willow or falix caprea of Limeus, is much recommended as equal to the Peruvian bark given in the fame or in greater quantity by Mr. White of Bath. Obferv. and Exper. on broad-leafed villow. Vernor and Hood, London. A Dr. Gunz in Germany recommends alfo as a fubftitute for Peruvian bark, the bark of fix fpecies of willow, the falix alba, pentandra, fragilis, caprea, vitellina, and amygdalina.

Art.IV.2.3.3. SORBENTIA.
lina. Dr. Gunz believes fome of thefe barks to be more efficacious than the Peruvian. And as fome of thefe willow-barks may be procured in great quantity, as they are flripped off fro \(n\) the willow twigs ufed by the bafket-makers in many parts of the couintry in the vernal months, it would feem to be an article worth attending to.

The root of geum urbanum, avens, is recommended as a fubftitute for Peruvian bark by Dr. Vogel, and faid to cure the quartan ague given in the dofe of half a dram every hour through the day. The datifca cannabina of Linneus is alfo hid to equal the Peruvian bark in its febrifuge virtues. Mcdical and Phyfical Journal, Vol. I. p. 191.
3. This clafs of abforbent medicines are faid to decreafe irritability. After any part of our fy ftem has been torpid or quiefcent, by whatever caufe that was produced, it becomes afterwards capable of being excited into greater motion by fmall ftimuli; hence the hot fit of fever fucceeds the cold one. As thefe medicines prevent torpor or quiefcence of parts of the fyftem, as cold hands or feet, which perpetually happen to weak confitutions, the fubfequent increafe of irritability of there parts is likewife prevented.
4. Thefe abforbent medicines, including both the bitters, and metallic falts, and opiates, are
Ii2. of univerfal abforption; but here cvacuations are likewife to be produced, as will be treated of in the Invertentia.
5. The matter in ulcers is thickened, and thenee rendered lefs corrofive, the faline part of it being reabforbed by the ufe of bitter medicines; henee the bark is ufed with advantage in the cure of ulcers.
6. Bitter medicines ftrengthen digeftion by promoting the abforption of chylc; hence the introduction of hop into the potation ufed at our meals, which as a medicine may be taken advantageounly, but, like other unneccffary ftimuli, muft be injurious as an artiele of our daily diet.

The hop may perhaps in fome degrec contribute to the production of gravel in the kidneys, as our intemperate wine-drinkers are more fubject to the gout, and ale-drinkers to the gravel in the formation of both which difeafes, there can be no doubt, but that the alcohol is the principal, if not the only agent.
7. Vomits greatly inercafe the abforption from the cellular membrane, as fquill, and foxglove. The fquill floould be given in the dofe of a grain of the dricd root every hour, till it operates up-
wards and downwards. Four ounees of the frefh leaves of the foxglove fhould be boiled from two pounds of water to one, and half an ounce of the decoction taken every tivo hours for four or more dofes. This medicine by flimulating into inverted action the abforbents of the fomach, increates the direct action of the cellular lymphaties.

Another more convenient way of afcertaining the dofe of foxglove is by making a faturated tincture of it in proof fpirit; which has the twofold advantage of being invariable in its original ftrength, and of kecping a long time as a fhopmedicine without lofing any of its virtue. Put two ounces of the leaves of purple foxglove, digitalis purpurea, nicely dried, and coarfely powdered, into a mixture of four ounces of rectified fpirit of wine and four ounces of water; let the mixture fand by the fire-fide twenty-four hours frequently fhaking the bottle, and thus making a faturated tincture of digitalis; which muft be poured from the fediment or paffed through filtering papcr.

Some perfon has lately objected to the quantity of the dried leaves of digitalis ufcd in this tineture as an unneceffary expenfe; not knowing that the plant grows fpontaneoufly by cart-loads in all fandy fituations, and not recollecting that the certainty of procuring this medicine at all times of the year, and from all fhops of the fame
degree of frength, is a circumfance of great importance.

As the fize of a drop is greater or lefs according to the fize of the rim of the phial from which it is dropped, a part of this faturated tincture is then directed to be put into a two-ounce phial, for the purpofe of afcertaining the fize of the drop. Thirty drops of this tincture are directed to be put into an ounce of mint-water for a draught to be taken twice or thrice a day, till it reduces the anafarca of the limbs, or removes the difficulty of breathing in hydrothorax, or till it indaces ficknefs. And if thefe do not occur in two or three days, the dofe muft be gradually increafed to forty or fixty drops, or further.

A lady, who was 92 years of age, was feized fuddenly, early in the morning, with great difficulty of refpiration, which continued in greater or lefs degree in fpite of many medicines for two or three weeks. Her legs were then become oedematous, and the could not lie down horizontally. On taking thirty drops of the faturated tincture of digitalis from a two-ounce phial twice a day, the became free from the difficult refpiration, and her legs became lefs fwelled, in two or three days. She has repeated this medicine about once a month for more than a year, with tincture of bark at intervals, and half a grain of opium at night, and retains a tolerable fiatc of health.

From

From the great ftimulus of this medicine the ftomach is rendered torpid with confequent ficknefs, which continues many hours and even days, owing to the great exhauftion of its fenforial power of irritation ; and the action of the heart and arteries becomes feeble from the deficient excitement of the fenforial power of affociation; and laftly, the abforbents of the cellular membrane act more violently in confequence of the accumulation of the fenforial power of affociation in the torpid heart and arteries, as explained in Suppl. I. 12.

A circumftance curioufly fimilar to this occurs to fome people on fmoking tobacco for a fhort time, who have not been accuftomed to it. A degree of ficknefs is prefently induced, and the pulfations of the heart and arteries become feeble for a fhort time, as in the approach to fainting, owing to the direct fympathy between thefe and the ftomach, that is from defcet of the excitement of the power of affociation. Then there fucceed a tingling, and heat, and fometimes fiweat, owing to the increafed action of the capillaries, or perfpirative and mucous glands; which are occafioned by the accumulation of the fenforial power of affociation by the weaker action of the heart and arteries, which now increafes the action of the capillaries.
8. Another method of increafing abforption
from the ccllular membrane is by warm air, or by warm fteam. If, the fiwelled legs of a dropfical patient are enclofed in a box, the air of which is made warm by a lamp or two, copious fiweats are foon produced by the increafed action of the capillary glands, which are feen to ftand on the fkin, as it cannot readily exitale in fo fmall a quantity of air, which is only changed fo faft as may be neceffary to permit the lamps to burn. At the fame time the lymphatics of the cellular membrane are fiimulated by the heat into greater action, as appears by the fpeedy reduction of the tumid legs.
It would be well worth trying an experiment upon a perfon labouring under a general anafarca by putting him into a room filled with air hcated to 120 or 130 degrees, which would probably excite a great general diaphorefis, and a general cellular abforption both from the lungs and every other part. And that air of fo great heat may be borne for many minutes without great inconvenience was fhewn by the experiments made in heated rooms by Dr. Fordyce and others. Philof. Tranf.

Another experiment of ufing warmth in anafarca, or in other difeafes, might be by immerfing the patient in warm air, or in warm fteam, received into an oil-fkin bag, or bathing-tub of tin, fo managed, that the current of warm air or fteam fhould pafs round and cover the whole
of the body cxcept the head; which might not be expofed to it; and thus the abforbents of the lungs might be induced to act more powerfully by fympathy with the fkin, and not by the ftimulus of heat. Sce Ufes of Warm Bath, Art. II. 2. 2. 1 .

A warm faline pediluvition has often been ufed with fuccefs to remove fivellings of the legs from deficient action of the abforbents of the lower extremities; the quantity of fea-falt fhould be about one thirtieth part of the water, which with about one eighticth part of fulphuric magncfian frlt, callcd magnefia vitriolata, or bitţer eathartic falt, conftitutes the medium firength of the feawater round this ifland, according to the experiments of Mr. Brownrig. In fuch a pediluvium the fixelled legs fhould be immerfed for half an hour every night for a. fortnight, at the heat of about 96 or 93 degrecs.

Dr. Reid, in a Trcatifc on Sca-bathing ; Cadell and Davis, London; recommends an univerfal warm-bath of fea-water, in œedematous fivellings, apparently with grcat fuccefs, and well advifcs friction to be diligently ufed in the bath on the tumid limbs, always rubbing them from their extremities towards the trunk of the body, and not the contrary way; as this muft moft facilitate the progrefs of the fluids in the abforbent fyftem; though thefc veffels are furnifhed with valves to preverat its return. In thefe baths the ftimulus of
the falt is added to that of the heat. See Art. II. 2. 2. 1 .
9. Another method of increafing abforption from the cellular membrane, which has been ufed in dropfies, has been by the great or total abftinence from fluids. This may in fome degree be ufed advantageoufly in fubjects of too great corpulency, but if carried to excefs may induce fevers, and greater evils than it is defigned to counteract, befides the perpetual exiftence of a painful thirft. In moft dropfies the thirft already exifting thews, that too little diluent fluid, and not too much, is prefent in the circulation.
IV. 1. Venous abforption. Cellery, watercreffes, cabbages, and many other vegetables of the clafs tetradynamia, do not increafe the heat of the body (except thofe, the acrimony of which approaches to corrofion), and hence they feem alone, or principally, to act on the venous fyftem; the extremities of which we have fhewn are abforbents of the red blood, after it has paffed the capillaries and glands.
2. In the fea-fcurvy and petechial fever the veins do not perfectly perform this office of abforption; and hence the vibices are occafioned by blood ftagnating at their extremities, or extravafated into the cellular membrane. And this clafs
of vegetables, ftimulating the veins to perform their natural abforption, without increafing the energy of the arterial action, prevents future petechix, and may affift the abforption of the blood already ftagnated, as foon as its chemical change renders it proper for that operation.
3. The fluids, which are extravafated, and received into the cells of the cellular membrane, feem to continue there for many days, fo as to undergo fome chemical change, and are then taken up again by the mouths of the cellular abforbents. But the new veffels produced in inflamed parts, as they communicate with the veins, are probably abforbed again by the veins along with the blood which they contain in their cavitics. Hence the blood, which is extravafated in bruifes of vibices, is gradually many days in difappearing; but after due evacuations the inflamed veffels on the white of the eye, if any ftimulant lotion is applied, totally difappear in a few hours.

Amongt abforbents affecting the veins we fhould therefore add the external application of ftimulant materials; as of vinegar, which makes the lips pale on touching them. Friction, and electricity.
4. Hemorrhages are of two kinds, either arterial,
rial, which are attended with inflammation; or venous, from a deficiency in the abforbent power of this fet of veffels. In the former cafe the torpentia are efficacious; in the latter fteck, opium, alum, and all the tribe of forbentia, are ufed with fuccefs.
5. Sydenham recommends vegetables of the clafs tetradynamia in rheumatic pains left after the cure of intermittents. Thefe pains are perhaps fimilar to thofe of the fea-fcurvy, and feem to arife from want of abforption in the affected part, and hence are relieved by the fame medicines.
V. 1. Inteftinal abforption. Some aftringent vegetables, as rhubarb, may be given in fuch dofes as to prove cathartic ; and, after a part of it is evacuated from the body, the remaining part augments the ablorption of the inteftines; and acts, as if a fimilar dofe liad been exhibited after the operation of any other purgative. Hence 4 grains of rhubarb ftrengthen the bowels, 30 grains firft empty them.
2. The earthy falts, as alum, increafe the inteftinal abforption, and hence induce confipation in their ufual dofe; alum is faid fometimes to cure intermittents, perhaps when their feat is in the inteftines, when other reme-
dies have failed. It is uffeful in the diabetes, by exciting the abforbents of the bladder into their natural action; and combincd with refin is efteemed in the fluor albus, and in gleets. Limeftone or chalk, and probably gypfum, poffers effects in fome degree fimilar, and increafe the abforption of the inteftines; and thus in certain dofes refrain fome diarrocas, but in greater dofes alum I fuppofe will act as a cathartic. Five or ten grains producc conftipation, 20 or 30 grains are either emetic or cathartic.
3. Earth of alum, tobacco-pipe clay, marl, Armenian bole, lime, crab's eyes or claws, and calcined hartfhorn, or bone afhes, reftrain fluxes; either mechanically by fupplying fomething like mucilage, or oil, or rollers to abate the friction of the aliment over inflamed membranes; or by increafing their abforption. The two laft confift of calcareous earth united to phofphoric acid, and the Armenian bole and marl may contain iron. By the confent between the inteftines and the fkin 20 grains of Armenian bole given at going into bed to hectic patients will frequently check their tendency to fiweat as well as to purge, and the more certainly if joined with one grain of opium.
VI. 1. Abforption from the liver, fomach, and other vifcera. When inflammations of the liver
liver are fubdued to a certain degree by venefection, with calomel and other gentle purges, fo that the arterial energy becomes weakened, four or eight grains of iron-filings, or of falt of fteel, with the Peruvian bark, have wonderful effect in euring the cough, and reftoring the lirer to its ufual fize and fanity; which it feems to effect by increafing the abforption of this vifcus. The fame I fuppofe happens in refpect to the tumours of other vifcera, as of the fpleen, or pancreas, fome of which are frequently enlarged in agues.
2. Hemorrhages from the nofe, rectum, kidneys, uterus, and other parts, are frequentlyatendant on difeafed livers; the blood being impeded in the vena portarum from the decreafed power of abforption, and in confequence of the increafed fize of this vifcus. Thefe hemorrhages after venefcetion, and a mercurial cathartic, are moft certainly reftrained by fteel alone, or joined with an opiate; which increafe the abforption, and diminifh the fize of the liver.

Chalybeates may alfo reftrain thefe hemorrhages by their promoting venous abforption, though they exert their principal effect upon the liver. Henec alfo opiates, and bitters, and vitriolic acid, are advantageoufly ufed along with them. It muft be added that fome hemorrhages recur by periods like the paroxyfms of intermit-
tent fevers, and are thence cured by the fame treatment.
3. The jaundice is frequently caufed by the infipidity of the bile, which does not ftimulate the gall-bladder and bile-ducts into their due action; hence it ftagnates in the gall-bladder, and produces a kind of cryftallization, which is too large to pafs into the inteftines, blocks up the bile-duct, and occafions a long and painful difeafe. A paralyfis of the bile-duct produces a funilar jaundice, but without pain.
4. Worms in fheep called flukes are owing to the dilute fate of the bile; hence they originate in the inteftines, and thence migrate into the biliary ducts, and corroding the liver produce ulcers, cough, and hectic fever, called the rot. Inhuman bodies it is probable the inert fate of the bile is one caufe of the production of worms; which infipid fate of the bile is owing to deficient abforption of the thimer parts of it; hence the pale and bloated complexion, and fwelled upper lip, of wormy children, is owing to the concomitant deficiency of abforption from the cellular membrane. Salt of fteel, or the ruft of it, or filings of it, with bitters, increafe the acrimony of the bile by promoting the abforption of its aqueous part; and hence deftroy worms, as well by their immediate action on the inteftines,
as on the worms themfelves. The cure is facilitated by prenifing a purge witl calomel. See Clais I. 2. 3. 9 .
5. The chlorofis is another difeafe owing to the deficient action of the abforbents of the liver, and perhaps in fome degrec alfo to that of the fecretory veffels, or glands, which compofe that wifcus. Of this the want of the catamenia, which is gencrally fuppofed to be a caufc, is only a fymptom or confequence. In this complaint the bilc is deficient perhaps in quantity, but certainly in acrimony, thec thinner parts not being abforbed from it. Now as the bile is probably of grcat confequence in the procefs of making the blood; it is on this account that the blood is fo deftitute of red globules; which is evinced by the great palenefs of thefe patients. As this ferous blood muft exert lefs ftimulus on thic heart, and arterics, the pulfe in confequence becomes quick as well as weak, as cxplained in Scct. XII. 1. 1.

The quicknefs of the pulfe is frequently fo great and permanent, that when attended by an accidental cough, the difeafe may be miftaken for hectic fever ; but is curcd by chalybeates, and bitters exhibited twice a day; with half a grain of opium, and a grain of aloe cvery night; and the expected catamenia appears in confequence of a reftoration of the duc quantity of red blood. This and the two former articles approach to
the difeare termed paralyfis of the liver. Sect. XXX. 4 .
6. It feems paradoxical, that the fame treatment with chalybeates, bitters, and opiates, which produces menftruation in chlorotic patients, thould reprefs the too great or permanent menftruation, which occurs in weak conftitutions at the time of life when it fhould ceale. This complaint is a hemorrhage owing to the debility of the abforbent power of the veins, and belongs to the paragraph on venous abforption above defcribed, and is thence curable by chalybeates, alum, bitters, and particularly by the exhibition of a grain of opium every night with five grains of rhubarb.

As fteel is foluble in the gaftric acid, perhaps the beft way of giving it may be in fine filings, or in a fteel-powder prepared in the following manner: diffolve green vitriol in water, add a feiv bits of iron to the folution, to precipitate any. copper which may be accidentally in it; precipitate this folution by falt of tartar, kali preparatum. Add to the precipitate two or three times its quantity of charcoal ponder, mix and put them into a crucible covered with a tile, and give them a red heat for an hour. An impalpable powder of iron will be produecd, which ought all of \(i t\) to obey the magnet.

\footnotetext{
7. Metallic falts fupply us with very powerful vól. II. K k remedies
}
remedies for promoting abforption in dropfical cafes; which frequently are caufed by enlargement of the liver. Firft, as they may be given in fuch quantities as to prove ftrongly cathatic, of which more will be faid in the article on invertentia; and then, when their purgative quality ceafes, like the effect of rhubarb, their abforbent quality continnes to act. The falts of mercury, filver, copper, iron, zinc, antimony, have all been ufed in the dropfy; cither fingly for the former purpofe, or united with bitters for the latter, and occafionally with moderatc but repeated opiates.
8. From a quarter of a grain to half a grain of blue vitriol given every four or fix hours, is faid to be very efficacious in obftinatc intermittents; which alfo frequently arife from an enlarged vifcus, as the liver or fpleen, and are thence owing to the deficient abforption of the lymphatics of that vifcus. A quarter of a grain of white arfenic, as I was informed by a furgeon of the army, cures a quartan ague with great certainty, if it be given an hour before the expected fit. This dofe he faid was for a robuft man, perhaps one eighth of a grain might be given and repeated with greater fafety and equal efficacy.

Dr. Fowler has given many fucceisful cafes in his treatife on this fubject. He prepares it by boiling fixty-four grains of white arfenic in a Florence flatk along with as much pure vegc:-
table fixed alcali in a pint of diftilled water till they are diffolved, and then adding as much diftilled water as will make the whole exactly fixteen ounces. Hence there are four grains of arfenic in every ounce of the folution. This fhould be put into a phial of fuch a fize of the edge of its aperture, that fixty drops may weigh one dram, which will contain half a grain of arfenic. To childsen from two years old to four he gives from tivo to five drops three or four times a day. From five years old to feven, he directs feven or eight drops. From cight years old to twelve, he directs from feven to ten drops. From thirteen years old to eighteen he directs from ten to twelve drops. From eighteen upwatds, twelve drops. In fo powerful a medicine it is always prudent to begin with fmaller dofes, and gradually to increafe them.

A faturated folution of arfenic in water is preferable I think to the above operofe preparation of it; as no error can happen in weighing the ingredients, and it more certainly therefore poffeffes an uniform ftrength. Put much more white arfenic reduced to powder into a given quantity of diftilled water, than can be diffolved in it. Boil it for half an hour in a Florence flank, or in a tin fauce-pair ; let it fand to fublide, and filter it through paper. My friend Mr. Grecne, a furgeon at Breewood in Staffordfhire, affured me, that he had cured in one feafon agucs without number with this faturated folution; that lre
\[
K k_{2} \quad \text { found }
\]
found ten drops from a two-ounce phial given 1l:rice a day was a full dofe for a grown perfon, but that he generally began with five.
'9. The manner, in which arfenic acts in curing intermittent fevers cannot be by its general fiimulus, becaufe no intoxication or heat follows the ufe of it; nor by its peculiar ftimulus on any part of the fecreting fyitem, fince it is not in fmall doles fuecceded by any increafed evacuation, or heat, and muft therefore exert its power, like other articles of the forbentia, on the abforbent fyffem. In what manner it deftroys life fo fuddenly is difficult to underfiand, as it docs not intoxicate like many vegetable poifons, nor produce fevers like contagious matter. When applied externally it feems chemically to deftroy the part like other eauffics. Does it chemically deftroy the ftomach, and life in confequence? or does it defroy the action of the ftomach by its great ftimulus, and life in confequence of the fympathy between the flomach and the heart? This laft appears to be the moft probable mode of its operation.

The fuecefs of arfenic in the cure of intermittent fevers I fufpect to depend on its fimulating the ftomach into flronger action, and thus, by the afloeiation of this vifeus with the heart and arteries, freventing the torpor of any part of the fanguiferous fytiem. I was led to this conclufion from the following confiderations.

Firf. The effects of arfenic given a long time internally in finall dofes, or when ufed in larger quantities externally, feem to be fimilar to thofe of other great ftimuli, as of wine or alcohol. Thefe are a bloated countenance, fivelled legs, hepatic tumours, and dropfy, and fometimes eruptions on the fkin. The former of thefe I have feen, where arfenic has been ufed externally for curing the itch; and the latter appears on evidence in the famous trial of Mifs Blandy at Chelmsford, about forty years ago.

Secondly. I faw an ague cured by arfenic in a child, who had in vain previoufly taken a very large quantity of bark with great regularity. And another cafe of a young officer, who had lived intemperately, and laboured under an intermittent fever, and had taken the bark repeatedly in confiderable quantities, with a grain of opium at night, and though the paroxyfins had been thriee thus for a.time prevented, they recurred in about a week. On taking five drops of a faturated folution of arfenic thrice a dhay the paroxyfms ceafed, and returned no more, and at the fame time his appetite became much improved.

Thirdly. A gentleman about fixty-five years of age had for about ten years boen fubject to an intermittent pulfe, and to frequent palpitations of his heart. Lately the palpitations feemed to obferve irregular periods, but the intermiffion of every third or fourth , pulfation was almoft per-
Kk3 petual.
petual. On giving him four drops of a faturated folution of arfenic from a two ounce phial almofe every four hours for one day, not only the palpitation did not return, but the intermiffon ceafed entirely, and did not return fo long as he took the medicine, which was three or four days.

Now as when the ftomach has its action much weakened by an over-dofe of digitalis, the pulfe is liable to intermit, this evinces a direct fympathy between thefe parts of the fyftem; and as I have repeatedly obferved, that when the pulfe begins to intermit in elderly people, that an eructation from the fomach, voluntarily produced, will prevent the threatened ftop of the heart; I am induced to think, that the torpid fate of the ftomach, at the inftant of the production of air occafioncd by its weak action, caufed the intermiffion of the pulfe. And that arfenic in this cafe, as well as in the cafes of agues above mentioned, produced its effects by ftimulating the ftomach into more powerful action; and that the equality of the motions of the heart was thus refored by increafing the excitement of the fenforial power of aflociation. See Sect. XXV. 17. Clais IV. 2. 1. 18.

Arfenic has lately been recommended in the hooping cough, tufiis convulfiva, by Mr. Simmons, furgeon of Manchefter, which he afferts to be attended with the moft falutary cffects, moderating the difcafe in a few days, and curing it generally in a fortnight. He has given it to children
children of a year old with fafety, in the dofes recommended by Dr. Fowler, whole folution he ufed, but feems to have ufed venefection and emetics occafionally, and recommends, after the folution has been omitted for a week, to repeat it, to prevent a relaple. Annals of Medicine, 1797.
10. Where arfenic has been given as poifon, it may be difeovered in the contents of the ftomach by the fmell like garlic, when a few grains of it are thrown on a red-hot iron. 2. If a few grains are placed between two plates of copper, and fubjected to a red heat, the copper becomes whitened. 3. Diffolve arlenic in water along with vegetable alcali, add to this a folution of blue vitriol in water, and the mixture becomes of a finc green, which gradually precipitates, as difcovered by Bergman. 4. Where the quantity is fufficient, fome wheat may be fteeped in a folution of it, which given to fparrows or chickens will deftroy them.
VII. 1. Abforption of the matter from venereal ulcers. No ulcer can heal, unlefs the abTorption from it is as great as the depofition in it. The preparations or oxydes of mercury in the eure of the venereal difcafe feem to act by their increafing the abforption of the matter in the ulcers it occafions; and that whether they are taken into the ftomach, or applied on the fkin, or on the furface of the uleers. And this in the \(\mathrm{Kk}_{4}\) fame
fame mannor as fugar of lead, or other metallic oxydes, promote fo rapidly the bealing of other uleers by their external application; and probably when taken internally, as ruft, of iron given to children affected with fcrofulous ulcers contributes to heal them, and folutions of lcad were once famous in phthifis.

The matter depofited in large abfeeffes does not oecafion hectic fever, till it has become oxygenated by being expofed to the open air, or to the air through a moift membrane; the fane feems to happen to other kinds of matter, which produce fever, or which occafion fpreading ulcers, and are thence termed contagious. Sce Class II. 1.3. II. 1.5. II. 1.6.6. This may perhaps occur from thefe matters not being generally abforbed, till they become oxygenated; and that it is the ftimulus of the aeid thus formed by their union with oxygen, whieh occafions their abforption into the cireulation, and the fever, which they then produce. For though eollcctions of matter, and milk, and mueus, are fometimes fuddenly abforbed during the action of emetics or in fea-fieknefs, they are probably eliminated from the body without entering the circulation; that is, they are taken up by the increaied action of one lymphatic braneh, and evacuated by the inverted action of fome other lymphatic branch, and thus carried off by ftool pr urine.
2. But
2. But as the matter in large abfecfes is in general not abforbed, till it becomes by fome means cxpofed to air, there is reafon to conclude, that the ftimulus of this new combination of the matter with oxygen oceafions its abforption ; and that hence the abforption of matter in cilcers of all kinds, is fill more powerfully effected by the external application or internal ufe of metallic oxydes; which are allo aeids conffifing of the metal united with oxygen; and laftly, becaufé venereal ulcers, and thofe of iteh, and tinea, will not heal without fome ftimulant applieation; that is, the feeretion of matter in them continues to, be greater, than the abforption of it; and the ulcers at the fame time continue to enlarge, by the contagion affecting the edges of them ; that is, by the ftimulus of the oxygenated matter ftimulating the eapillary veffels in .its vicinity into actions fimilar to thofe of the uleer, which produces it.

This effect of the oxydes of mercury oceurs, whether falivation attends its ufe or not. Salivation is mueh forwarded by external warmth, when mercury is given to promote this fecretion; but as the cure of venereal complaints depends on its abforbent quality, the act of falivation is not neceffary or ufeful. A quarter of a grain of good corrofive fublimate twice a day will feldom fail of curing the moft confirmed por ; and will as feldom falivate, if the patient be kept eool. A
quarter of a grain thrice a day I believe to be infallible, if it be good fublimate.

Mercury alone when fwallowed does not act beyond the inteftines; its active preparations are the falts formed by its union with the various acids, as mentioned in the catalogue. Its union with the vegetable acid, when triturated with manna, is faid to compofe Keyfer's Pill. Triturated with gum arabic it is much recommended by Plenck ; and triturated with fugar and a little effential oil, as directed in a former Edinburgh Difpenfatory, it probably forms fome of the fyrups fold as noftrums.

United with fulphur it feldom enters the circulation, as when cinnabar, or æthiops mineral, is taken inwardly. But united. with fat and rubbed on the fkin, it is readily abforbed. I know not whether it can be united to charcoal, nor whether it has been given internally when united with animal fat; if fix grains only of fulphur be added to two ounces of hog's fat and fix drachms of mercury, they are faid to unite with much lefs labour of trituration, than the hog's fat and mercury alone.
VIII. 1. Abforptions in gencral are increafed by inanition; hence the ufe of evacuations in the cure of ulcers. Dr. Jurin abforbed in one night, after a day's abfinence and exercife, eighteen ounces from the atmofphere in his chamber; and
every one muft have obferved, how foon his fheets became dry, after having been moiftened by fweat, if he throws off part of the bed-clothes to cool himfelf; which is owing to the increafed cutaneous abforption after the evacuation by previous fweat.
2. Now as opium is an univerfal ftimulant, as explained in the article of Incitantia, it muft ftimulate into increafed action both the fecretory fyftem, and the abforbent one; but after repeated eyacuation by venefection, and cathartics, the abforbent fyftem is already inclined to act more powerfully; as the blood-veffels being lefs diftended, there is lefs reffiftance to the progrefs of the abforbed fluids into them. Hence after evacuations opium promotes abforption, if given in fmall dofes, much more than it promotes fecretion; and is thus eminently of fervice at the end of inflammations, as in pleurify, or peripneumony, in the dofe of four or five drops of the tincture, given before the accefs of the evening paroxyfm ; which I have feen fücceed even when the rifus fardonicus has exifted. Some convulfions may originate in the want of the abforption of fome acrid fecretion, which occafions pain; hence thefe difeafes are fo much more certainly relieved by opium after venefection or other evacuations.

IX, 1, Ab-
IX. 1. Abforption is increafed by the calces or folutions of mercury, lead, zinc, copper; iron, externally applied; and by areenic, and by ful-phur,- and by the application of bitter vegetables in fine powder. Thus an ointment confifting of mereury and hog's fat rubbed on the fkin cures venereal uleers; and many kinds of herpetic eruptions are removed by an ointment confiffing of fixty grains of white precipitate of mercury and an ounce of hog's fat.
2. The tumours about the necks of young people arc often produced by the abforption of a faline or acrid material, which has been depofited from eruptions behind the ears, owing to deficient abforption in the furface of thic ulcer, but which on running down on the 1 kin below becomes abforbed, and fwells the lymphatie glands of the neck; as the variolous matter, when inferted into the arm, fwells the gland of the axilla. Sometimes the perfpirative matter produced behind the ears becomes putrid from the want of daily wafhing them, and may alfo caufe by its abforption the tumours of the lymphatics of the neck. In the former cafc the application of a cerate of lapis calaminaris, or of ceruffa in dry powder, or of rags dipped in a folution of fugar of lead, increafes the abforption in the ulcers, and prevents the effufion of the faline
faline part of the fecreted material. The latter is to be prevented by cleanlinefs.

After the cruptions or ulcers are healed a folution of corrofive fublimáte of one grain to an ounce of water applied for fome weeks behind the ear, and amongft the roots of the hair on one fide of the head, where the mouths of the lymphatics of the neck open themfelves, frequently removes thefe tumours.
3. Linen rags moiftened with a folution of half an ounce of fugar of lead to a pint of water applied on the eryfipelas on anafarcous legs, which have a tendency to mortification, is more efficacious than other applications. White vitriol fix grains diffolved in one ounce of rofe water removes inflammations of the eyes after evacuation more certainly than folutions of lead. Blue vitriol two or three grains diffolved in an ounce of water cures ulcers in the mouth, and other mucous membranes, and a folution of arlenic externally applied cures the itch, but requires great eaution in the -ufe of it. Sce Clafs II. 1. 5. 6 .

A feeble old man with fivelled legs had an cryfipelas on both of them; to one of thefe legs a fine powder of Peruvian bark was applied dry, and renewed twice a day; on the other linen rags moificned with a folution of faccharum faturni were applied, and renewed twice a day ;
and it was obferved, that the latter healed much fooner than the former.

As the external application of calx of lead ftimulates inflamed parts very violently, if it be applied too early, before the veffels are emptied by evacuations, or by the continuance of the difeafe, it is liable to increafe the inflammation, or to induce mortification, as in ophthalmy; and in a cafe, which was related to me of a perfon who much pricked his legs amongft gorfe, which, on the application of Goulard's folution of lead, mortified with extenfive floughs. But where the fyf-, tem is previoufly emptied, there is lefs refiftanceto the progrefs of abforbed fluids; and the ftimulus of lead then increafes the action of the abforbent fyftem more than of the fecerning fyftem, and the inflamed part prefently difappears.
4. Bitter vegetables, as the Peruvian bark, quilted between two fhirts, or firewed in their beds, will cure the ague in children fometimes. Iron in folution, and fome bitter extract, as in the form of ink, will cure one kind of herpes called the ringworm. And I have feen feven parts of bark in fine powder mixed with one part of cerule, or white lead, in fine powder, applied dry to fcrofulous ulcers, and renewed daily, with great advantage.
5. To thefe fhould be added clectric fparks and
and thocks, which promote the abforption of the veffels in inflamed eyes of ferofulous children; and difperfe, or bring to fuppuration, fcrofulous tumours about the neck. For this laft purpofe fmart fhocks fhould be paffed through the tumours only, by enclofing them between two brafs knobs communicating with the external and internal coating of a charged phial. See Art. II. 2. 2. 2.
X. 1. Bandages increafe abforption, if they are made to fit nicely on the part ; for which purpofe it is neceffary to fpread fome moderately adhefive plafter on the bandage, and to cut it into tails, or into fhreds two inches wide; the ends are to be wrapped over each other; and it muft be applied when the part is leaft tumid, as in the morning before the patient rifes, if on the lower extremities. The emplaftrum de minio made to cover the whole of a fwelled leg in this manner, whether the fivelling is hard, which is ufually termed forbutic; or more eafily compreffible, as in anafarca, reduces the limb in two or three days to its natural fize; for this purpofe I have dometimes ufed carpenter's glue, mixed with one twentieth part of honey to prevent its becoming too hard, inftead of a refinous plafter; but the minium plafter of the fhops is in general to be preferred. Nothing fo much facilitates the cure of ulcers in the legs, as coyering the whole limb
from the toes to the knee with fueh a plafter bandage ; which increafes the power of abforption in the furfaee of the fore.
2. The lymph is earried along the abforbent veffels, which are replete with valves, by the intermitted preffure of the arteries in their neighbourhood. Now if the external fkin of the limb be lax, it rifes, and gives way to the preffure of the arteries at every pulfation; and thence the lymphatic veffels are fubject to the preffure of but half the arterial force. But when the external fkin is tightened by the furrounding bandage, and thence is not elevated by the arterial diaftole, the whole of this power is exerted in compreffing the lymphatic veffels, and carrying on the lymph already abforbed; and thence the abforbent power is fo amazingly inerealed by bandage nicely applied. Pains are fometimes left in the flefhy parts of the thighs or arms, after the inflammation is gone, in the acute rheumatifm, or after the patient is too weak for further evacuation ; in this cafe after internal abforbent medieines, as the bark, and opiates, have been ufed in vain, I have fuccefsfully applied a plafter-bandage, as above defcribed, fo as to comprefs the pained part.

Since the above was written, Mr. Baynton, an ingenious furgeon of Briftol, has publifhed "A Method of Treating Ulcers of the Legs," fold by Robinfon,

Robinfon, London. In which he endeavours to bring the lips of thofe ulcers nearer together by means of flips of adhefive plafter, as above defcribed; whieh feems to have been attended with great fuccefs, without confinement of the patient. See Sect. XXXIII. 3. 2.

But when llips of adhefive plafter are put over a wound fo as to bring the edges of it together nearly, or quite, into contact with each other, the part is at the fame time covered, as the flips of adhefive plafter are applied, from the eyc of the furgeon. I have therefore advifed two tin plates a little longer than the wound, and about half an inch broad, to be faftened to the ends of the pieces of adhefive plafter, and applied one on each lip of the wound or ulcer; and then by a narrow flip of adbefive plafter applied at each end of thefe tins, they may be drawn together, and the whole lips of the wound may be feen at the fame time by the furgeon; and then a comprefs of thin lead, or of linen, may be applied by other ftrips of plafter fo as to heal recent wounds, and even ulcers, without fcarcely any unevennefs ar width of the fcar.
XI. 1. We Thall conelude by obferving, that the forbentia ftrengthen the whole habit by preventing the efcape of the fluid part of the fecretions out of the body, before it has given up as much nourifhment, as it is capable ; as the liquid
part of the fecretion of urine, fweat, faliva, and of all other fecretions, which are poured into receptacles. Hence they have been faid to brace the body, and been called tonies, which are mechanical terms not applicable to the living bodies of animals; as explained in Sect. XXXII. 3.2.
2. A continued ufe of bitter medieines for years together, as of Portland's powder, or of the bark, is fuppofed to induce apoplexy, or other fatal difeafes. Two cafes of this kind have fallen under my obfervation; the patients were both rather intemperate in refpect to the ufe of fermented liquors, and one of them had been previoufly fubject to the gout. As I believe the gout generally originates from a torpor of the liver, which, inftead of being fucceeded by an inflammation of it, is fucceeded by an inflammation of fome of the joints; or by a pimpled face, which is another mode, by which the difeafe of the liver is terminated : I conceive, that the daily ufe of bitter medieines had in thefe patients prevented the removal of a gouty inflammation from the liver to the membranes of the joints of the extremities, or to the 1 kin of the face, by preventing the neceffary torpor of thefe parts previous to the inflammation of them ; in the fame manner as cold fits of fever are prevented by the fame medicines; and, as I believe, the re-

Art. IV. 3. I. SORBENTIA.
turns of the gout have fome times for two or three years been prevented by them.

One of there patients died of the apoplexy in a few hours; and the other of an inflammation of the liver, which I believe was called the gout, and in confequence was not treated by venefection, and other evacuations. - Hence it appears, that the daily ufe of hop in our malt liquor muft add to the noxious quality of the fpirit in it, when taken to excels, and contribute to the production of apoplexy, or inflammation of the liver.

\section*{III. Catalgue of the Sorbentia.}
I. Sorbentia affecting the fkin.
1. Acid of vitriol, of fea-falt, lemons, floes, prunus fpinofa, crabs, pyrus, quince, pyrus cydonia, opium.
2. Externally calx of zinc, of lead, or of mercury.
II. Sorbentia affecting the mucous membranes.
1. Juice of floes, crabs, Peruvian bark, cinchona, opium.
2. Externally blue vitriol.
III. Sorbentia affccting the cellular membrane.
1. Peruvian bark, wormwoods, artemifia Ll2 maritima, maritima, artemifia abfynthium, wormfeed, artemifia fantonicum, chamomile, anthemis nobilis, tanfey, tanacetum, bogbean, menyanthes trifoliata, centaury, gentiana centaurium, gentian, gentiana lutea, artichoke-leaves, cynara fcolymus, hop, humulus lupulus, falix caprea, geum urbanum, datifca cannabina.
2. Orange-pecl, cinnamon, nutmeg, mace.
3. Vomits, fquill, digitalis, tobacco.
4. Bath of warm air, of fteam.
IV. Sorbentia affecting the veins.
1. Water-crefs, fifymbrium nafturtium aquaticum, muftard, finapis, fcurvygrafs, cochlearia hortenfis, horfe-radifh, cochlearia armoracia, cuckoo-flower, cardamine, dog's-grafs, dandelion, le-. ontodon, taraxacon, cellery, apium, cabbage, braffica.
2. Chalybeates, bitters, and opium, after fufficient cvacuation.
3. Externally vinegar, friction, electricity.
V. Sorbentia affecting the inteftines.
1. Rhubarb, rheum palmatum, oak-galls, gallæ quercinæ, tormentilla erecta, cinquefoil, potentilla, red-rofes, uva urfi, fimarouba.
2. Logwood,
2. Logwood, ḣæmatoxylum campechianum, -fuccus àeaciæ, dragon's blood, terra japonica, mimofa catechu.
3. Alum, earth of alum, Armenian bole,
\(\therefore\) chalk, cretâ, cráb's claws, chelæ canerorum, white clay, cimolia, calcined harthorn, cornu cervi calcinatum, bone-afhes.
VI. Sorbentia affecting the liver, ftomach, and other vifcera. Ruft of iron, filings of iron, falt of fteel, fal martis, blue vitriol, white vitriol, calomel, emetic tartar, fugar of lead, white arfenic.
VII. Sorbentia affecting venereal ulcers. Mercury diffolved or corroded by the following acids :
1. Diffolved in vitriolic acid, called turpeth mineral, or hydrargyrus vitriolatus.
2. Diffolved in nitrous acid, called hydrargyrus nitratus ruber.
3. Diffolved in muriatic acid, mercurius corrofivus fublimatus, or hydrargyrus muriatus.
4. Corroded by muriatic acid. Calomel.
5. Precipitated from muriatic acid, mercurius precipitatus albus, calx hydrargyri alba.
6. Corroded by carbonic acid? The black powder on crude mercury. LI 3 7. Cal-
7. Calcined, or united with oxygen.
8. United with animal fat, mercurial ointment.
9. United with fulphur. Cinnabar.
10. Partially united with fulphur. Ethiops mineral.
11. Divided by calcareous earth. Hydrargyrus cum cretâ.
12. Divided by vegetable mucilage, by fugar, by balfams.
VIII. Sorbentia affecting the whole fyftem. Evacuations by venefection and catharfis, and then the exhibition of opium.
IX. Sorbentia externally applied.
1. Solutions of mercury, lead, zinc, copper, iron, arfenic; or metallic calces applied in dry powder, as ceruffa, lapis calaminaris.
2. Bitter vegetables in decoctions and in dry powders, applied externally, as Peruvian bark, oak bark, leaves of wormwood, of tanfey, chamomile flowers or leaves.
3. Electric fparks, or fhocks.
X. Bandage fpread with emplaftrum e minio, or with carpenter's glue mixed with one twentieth part of honey.
XI. Portland's powder its continued ufe pernicious, and of hops in beer.

\section*{Art. V. INVERTENTIA.}
I. Those things, which invert the natural order of the fucceffive irritative motions, are termed invertentia.
1. Emetics invert the motions of the fomach \({ }_{2}\) duodenum, and œfophagus.
2. Violent cathartics invert the motions of the lacteals, and inteftinal lymphatics.
3. Violent errhines invert the nafal lymphatics, and thofe of the frontal and maxillary finufes, And medicines producing naufea, invert the motions of the lymphatics about the fauces.
4. Medicines producing much pale urine, as a certain quantity of alcohol, invert the motions of the urinary abforbents; if the dofe of alcohol is greater, it inverts the ftomach, producing the drunken ficknefs.
5. Medicines producing cold fweats, palpitation of the heart, globus hyftericus; as violent evacuations, fome poifons, fear, anxiety, act by inverting the natural order of the vafcular mos, tions.
\[
\mathrm{L} 14
\]
II. OR -

\section*{II. Observations on the Invertentia.}
I. 1. The action of vomiting feems originally to have been occafioned by difagrecable fenfation from the diftention or acrimony of the aliment; in the fame mamer as when any difguffiful material is taken into the mouth, as a bitter drug, and is rejected by the retrograde motions of the tongue and lips; as explained in Clafs IV. 1. 1. 2. and mentioned in Sect. XXXV. 1. 3. Or the difagreeable fenfation may thus excite the poiver of volition, which may alfo contribute to the retrograde actions of the ftomach and œfophagus, as when cows bring up the contents of thcir firft ftomach to remafticate it. To cither of thefe is to bc attributed the action of mild emetics, which foon ccafe to operate, and leave the ftomach flronger, or more irritable, aftcr their operation; owing to the accumulation of the fenforial power of irritation during its torpid or inverted action. Such appcars to be the operation of ipecacuanha, or of antimoniuns tartarizatum, in frmall dofes.
2. But there is reafon to believe, that the ffronger emetics, as digitalis, firft fimulate the abforbent vefficls of the ftomach into greater action; and that the inverted motions of thefe ab-
forbents next occur, pouring the lymph, lately taken up, or obtained from other lymphatic branches, into the fomach: the quantity of which in fome difcafes, as in the cholcra morbus, is inconceivable. This inverted motion, firft of the abforbents of the ftomach, and afterwards of the fomach itfelf, feems to originate from the exhauftion or debility, which fucceeds the unnatural degree of action, into which they had been previoufly ftimulated. An unufual defect of ftimulus, as of food without fpice or wine in the ftomachs of thofe, who have been much accuftomed to fpice or wine, will induce ficknefs or vomiting; in this cafe the defective energy of the ftomach is owing to defect of accuftomed ftimulus; while the action of vomiting from digitalis is owing to a deficiency of fenforial power, which is previoufly exhaufted by the excefs of its ftimulus. See Sect, XXXV. 1. 3. and Clafs IV. 1. 1. 2 .

For firft, no increafe of heat arifes from this action of vomiting; which always occurs, when the fecerning fyftem is ftimulated into action. Secondly, the motions of the abforbent veffels are as liable to inverfion as the ftomach itfelf; which laft, with the œfophagus, may be confidered as the abforbent mouth and belly of that great gland, the inteftinal canal. Thirdly, the clafs of forbentia, as bittcrs and metallic falts, given in large dofes, become invertentia, and vo-
mit, or purge. And laftly, the ficknefs and vomiting induced by large potations of wine, or opium, does not occur till next day in fome people, in none till fome time after their ingurgitation. And tincture of digitalis in the dofe of 30 or 60 drops, though applied in folution, is a confiderable time before it produces its effect; though vomiting is inftantaneoufly induced by a naufeous idea, or a naufeous tafte in the mouth. At the fame time there feem to be fome materials, which can immediately flimulate the fomach into fuch powerful action, as to be immediately fucceeded by paralyfis of it, and confequent continued fever, or immediate death ; and this without exciting fenfation, that is, without our perceiving it. Of thefe are the contagious matter of fome fevers fwallowed with the faliva, and probably a few grains of arfcnic taken in folution. See Suppl. I. 8. S. Art. IV. 2. 6. 9.
3. Some branches of the lymphatic fyfem become inverted by their fympathy with other branches, which are only fimulated into too violent abforption. Thus, when the ftomach and duodenum are much ftimulated by alcohol, by nitre, or by worms, in fome perfons the urinary lymphatics have their motion inverted, and pour that material into the bladder, which is abforbed from the inteftines. Hence the drunken diabetes
is produced; and hence chyle is feen in the urine in sworm cafes.

When on the contrary fome branches of the abforbent fyftems have their motions inverted in confequence of the previous exhauftion of their fenforial power by any violent ftimulus, other branches of it have their abforbent power greatly increafed. Hençe continued vomiting, or violent cathartics, produce great abforption from the cellular membrane in cafes of dropfy; and the fluids thus abforbed are poured, into the ftomach and inteftines by the inverted motions of the lacteals and lymphatics. See Sect. XXIX. 4. and 5.
4. The quantity of the dofe of an emetic is not of fo great confequence as of other medicines; as the greateft part of it is rejected with the firft effort. All emetics are faid to act with greater certainty when given in a morning, if an opiate had been given the night before. For the fenforial power of irritation of the ftomaeh had thus been in fome meafure previounly exhaufted by the fimulus of the opium, which thus facilitates the action of the emetic; and which, when the dofe of opium has been large, is frequently followed on the next day by fpontaneous ficknefs and vomitings, as after violent intoxication.

Ipecacuanha is the moft certain in its effect from five grains to thirty; white vitriol is the moft ex- peditious in its effect, from twenty grains to thirty diffolved in warm water; but emetic tartar, antimonium tartarifatum, from one grain to four to fanc people, and from thence to twenty to infane patients, will anfwer moft of the ufeful purpofes of emetics; but nothing equals the digitalis purpurea for the purpofe of abforbing water from the cellular membrane in the anafarca pulmonum, or hydrops pectoris. See Art. II. 3. 7.
II. Violent cathartics. 1. Where violent cathartics are required, as in dropfies, the fquill in dried powder made into fmall pills of a grain, or a grain and a half, one to be given every hour till they operate brifkly, is very efficacious; or half a grain of emetic tartar diffolved in an ounce of peppermint-ivater, and given every hour, till it opcrates. Scammony, and other ftrong purges, are liable to produce hypercatharfis, if they are not nicely prepared, and accurately weighed, and are thence dangerous in common praclice. Gamboge is uncertain in its cffects, it has otherwife the good property of being lafielets; and on that account fome preparation of it might be ufeful for children, by which its dofe could be afcertained, and its effects rendered more uniform.
2. In inflammations of the bowels with conftipation
pation calomel, given in the dofe from ten to twenty grains after due vencfection, is moft efficacious; and if made into very fmall pills is not liable to be rejected by vomiting, which generally attends thofe cafcs. When this fails, a grain of aloes every hour will find its way, if the powel is not deftroyed; and fometimes, I believe, if it be, when the mortification is not extenfive. If the vomiting continues after the pain ceafes, and efpecially if the bowels become tumid with air, which founds on being ftruck with the finger, thefc patients feldom recover. Opiates given along with the cathartics I believe to be frequently injurious in inflammation of the bowels, though they may thus be given with advantage in the faturnine colic; the pain and conflipation in which difeafe are owing to torpor or inactivity, and not to too great action. See Clars I. 2. 4. 8 .
III. Violent errhines and fialagogues. 1. Turpeth mineral in the quantity of one grain mixed with ten grains of fugar aniwers every purpofe to be expected from crrhines. Their operation is by inverting the motions of the lymphatics of the membrane, which lines the noftrils, and the caverns of the forehead and chceks; and may thence poffibly be of fervice in the hydrocepha. lus internus.

Some other violent errhines, as the powder of white ducing the fenforial poiver of fenfation, as well as increafing that of irritation; and thus to produce violent action of the membranes of the nortrils, and of the frontal and maxillary finufes, which may by affociation excite into action the torpid membranes, whieh oceafion the head-ach. They may be ufed on the fame aecount in amaurofis and in deafnefs.
2. A copious falivation without any inereafe of heat often attends hyfteric difeafes, and fevers with debility, owing to an inverfion of the lymphaties of the mouth, fee Clafs I.1.2.6. The fame occurs in the naufea, which preeedes vomiting; and is alfo excitable by difagrecable taftes, as by fquills, or by naufeous fmells, or by naufeous ideas. Thefe are very fimilar to the occafional difcharge of a thin fluid from the noftrils of fome people, which reeurs at certain periods, and differs from defective abforption.
IV. Violent diureties. 1. If nitre be given from a dram to half an ounce in a morning at repeated draughts, the patient beeomes fickifh, and mueh pale water is thrown into the bladder by the inverted action of the urinary lymphatics.

Ifenee

Hence the abforption in ulcers is increafed and the cure forwarded, as obferved by Dr. Rowley.
2. Cantharides taken inwardly fo ftimulate the nock of the bladder as to increafc the difcharge of mucus, which appears in the urine ; but I once faw a large dofe taken by miftake, not lefs than half an ounce or an ounce of the tincture, by which I fuppofe the urinary lymphatics were thrown into violent inverted motions, for the patient drank repeated draughts of fubtepid water to the quantity of a gallon or two in a few hours; and during the greateft part of that time he was not I believe two entire minutes together without making water. A little blood was feen in his water the next day, and a forenefs continucd a day longer without any other inconveniencc.
3. The decosion of foxglove fhould alfo be mentioned herc, as great effufions of urine frequently follow its exhibition. See Art. IV. 2. 3. 7. And an infufion or tincture of tobacco as recommended by Dr. Fowler of York.
4. Alcohol, and opium, if taken fo as to induce flight intoxication; and the body be kept cool, and much diluting liquids taken along with them, have fimilar effect in producing for a time a greater flow of urine, as moft intemperate drinkers muft occafionally have obferved. This circumftance
circumfance feems to have introduced the ufe of gin, and other vinous fpirits, as a diuretic, unfortunately in the gravel, amopgft ignorant people; which difeafe is generall produced by fermented or fpirituous liquors, and always increafed by them.
5. Fear and anxiety are well known to produce a great frequeney of .making water. A perfon who believed he had made a bad purchafe concerning an eftate, told me, that he made five or fix pints of water during a fleeplefs night, which fueceeded his bargain; and it is ufual, where young men are waiting in an antiroom to be examined for college preferment, to fee the cham-ber-pot often wanted.
V. Cold fweats about the head, neck, and arms, frequently attend thofe, whofe lungs are oppreffed, as in fome dropfies and afthma. A cold fiveat is alfo frequently the harbinger of death. Thefe are from the inverted motions of the eutaneous lymphatic branches of thoie parts.

\section*{III. Catalogue of Invertentia.}
I. Emeties, ipecacuanha, emctic tartar, antimonium tartarifatum, fquill, fcilla maritima, carduus benedictus, cnieus aearna, chamomile, anthemis nobilis, white vitriol, vitriolum
olum zinci, foxglove, digitalis purpurea, clyfters of tobacco.
II. Violent cathartics, emetic tartar, 〔quill, buckthorn, rhamntus catharticus, fcammonium, convolvulus fcammonia, gamboge, elaterium, colocynth, cucumis colocynthis, veratrum.
III. Violent errhines and fialagogues, turpeth mineral, hydragyrus vitriolatus, afarum europæum, euphorbium, caṕficum,'veratrum, naufeous fmells, naufeous ideas.
IV. Violent diuretics, nitre, fquill, feneka, cantharides, alcohol, foxglove, tobacco, anxiety.
V. Cold fudorifics, poifons, fear, approaching death.

Art. VI. REVERTENTIA.
I. Those things, which reftore the natural order of the inverted irritative motions, are termed Revertentia.
1. As mufk, caftor, afafœetida, valcrian, effential oils.
yob. Ix \(\quad \mathrm{M}\) in \(\quad\) 2. Externally
2. Externally the vapour of burnt fcathers, of volatile falts, or oils, blifters, finapifms.

Thefe reclaim the inverted motions without increafing the heat of the body above its natural ftate, if given in their proper dofes, as in the globus hyftericus, and palpitation of the heart.

The incitartia revert thefe morbid motions more certainly, as opium and alcohol : and reftore the natural heat more; but if they induce any degree of intoxication, they are fucceeded by debility, when their fimulus ceafes.
II. Observations on the Revertentia.
I. 1. The hyfteric difeafe is attended with inrerted motions feebly exerted of the œfophagus, inteftinal canal and lymphatics of the bladder. Hence the borborigmi, or rumbling of the bowels, owing to their fluid contents defcending as the air bencath afeends. The globus hyfterieus confifs in the retrograde motion of the ofophagus, 'and the great flow of urine from that of the lymphatics fpread on the neek of the bladder ; and a copious falivation fometimes happens to thefe patients from the inverfion of the lymphatics of the mouth; and palpitation of the heart owing to weak or incipient inverfion of its motions; and fyncope, when this occurs in its
-reatefi degree.
Thefe hyfteric affections are not neceflarily attended
attended with pain; though it fometimes happens, that pains, which originate from quiefcence, afflict thefe patients, as the hemicrania, which has erroneoufly been termed the clavus hyftericus; but which is owing folely to the inaction of the membranes of that part, like the pains attending the cold fits of intermittents, and which frequently returns like them at very regular periods of time.

Many of the above fymptoms are relieved by mufk, caftor, the foetid gums, valerian, oleum animale, oil of amber, which act in the ufual dofe without heating the body. The pains, which fometimes attend thefe conftitutions, are relieved by the fecernentia, as effential oils in common tooth-ach, and balfam of Feru in the flatulent colic. But the incitantia, as opium, or vinous fpirit, reclaim thefe morbid inverted motions with more certainty, than the foetids; and remove the pains, which attend thefe conftitutions, with more certainty than the fecernentia; but if given in large dofes, a debility and return of the hyfteric fymptoms occurs, when the effect of the opiurn or alcohol ceafes. Opiates and foetids joined feem beit to anfiver the purpofe of alleviating the prefent fymptoms; and the forbentia, by ftimulating the lymphatics and lacteals into continued action, prevent a relapfe of their inverfion, as Peruvian bark, and the ruft of iron. Sec Clafs I. 3. 1. 10.

> Mm2 II. Vomit
II. Vomiting confifts in the inverted order of the motions of the ftomach, and œefophagus; and is alfo attended with the inverted motions of a part of the duodenum, when bile is cjectcd; and of the lymphatics of the ftomach and fauces, when naufea attends; and when much lymph is evacuated. Permanent vomiting is for a time relieved by the incitantia, as opium or alcohol; but is liable to return, when their action ceafes. A blifter on the back, or on the ftomach, is more efficacious for reftraining vomiting by their fitmulating into action the external fhin, and by fympathy affecting the membranes of the fomaeh. In fome fevers attended with ineeffant vomiting Sydenham advifed the patient to put his head under the bed-clothes, till a fweat appeared on the fkin, as explained in Clafs IV. 1. 1. 3.

In chronical romiting I have obferved crude mercury of good effect in the dofe of half an ounce twicc a day. The vomitings, or vain efforts to vomit, which fometimes attend hyfteric or epileptic patients, arc frequently inftantly relievcd for a time by applying flour of muftardfecd and water to the fmall of the leg; and removing it, as foon as the pain beeomes confiderablc. If finapifms lie on too long, efpecially in paralytic cafes, they arc liable to produce troublefome ulcers. A plafter or cataplafm, with opium and camphor on the region of the fomach, will fometimes revert its retrograde motions.
III. Violent
III. Violent catharfis, as in diarrhœa or dyfentery, is attended with inverted motions of the lymphatics of the inteftines, and is generally owing to fome ftimulating material. This is counteracted by plenty of mucilaginous liquids, as folutions of gum arabic, or fmall chicken broth, to wafh away or dilute the ftimulating material, which caufes the difeafe. And then by the ufe of the inteftinal forbentia, Art. IV. 2. 5. as rhubarb, decoction of logwood, calcined hartfhorn, Armenian bole; and lafily, by the incitantia, as opium.
IV. The diabœtes confifts in the inverted motions of the urinary lymphatics, which is generally I fuppofe owing to the too great action of fome other branch of the abforbent fyftem. The urinary branch fhould be ftimulated by cantharides, turpentine, refin (which when taken in larger dofes may poflibly excite it into inverted action), by the forbentia and opium. The inteftinal lymphatics thould be rendered lefs active by torpentia, as calcareous earth, earth of alum; and thofe of the fkin by oil externally applied over the whole body; and by the warm-bath, which fhould be of ninety-fix or ninety-eight degrees of heat, and the patient fhould fit in it every day for half an hour.

> V. Inverted motions of the intefinal canal \(\mathrm{M} \mathrm{m} \mathrm{3}^{3}\)
with all the lymphatics, which open into it, conftitute the ileus, or iliac paffion; in which clifeafe it fometimes happens, that clytters are returned by the mouth. After venefection from ten grains to twenty of calomel make into very fmall pills; if thefe be rejected, a grain of aloe every hour ; a blifter ; erude mercury; warm bath; if a elyfter of iced water?

Many other inverted motions of different parts of the fyftem are defcribed in Clafs I. 3. and which, are to be treated in a manner fimilar to thofe above defcribed. It muft be noted, that the medieines mentioned under number one in the catalogue of revertentia are the true articles belonging to this clafs of medicines: Thofe enumerated in the other four divifions are chiefly fuch things as tend to remove the ftimulating caufes, which have induced the inverfion of the motions of the part, as acrimonious contents, or inflammation, of the bowels in diarrhœa, diabetes or in ileus. But it is probable after thefe remote caufes are deftroyed, that the fetid gums, mufk, caftor, and balfams, might be given with advantage in all thcfe cafes.

\section*{III. Catalogue of Revertentia.}
I. Inverted motions, which attend the hyfferic difeafe, are reclaimed, 1. By mufk, caftor. 2. By afafætida, galbanum, fagapenum, ammoniacum, valerian. 3. Effential oils of cinnamon, nutmeg, cloves, infufion of penny-royal, mentha pulegium, peppermint, mentha piperita, ether, camphor. 4. Spirit of hartfhorn, oleum animale, fponge burnt to charcoal, black fnuffs of candles, which confift principally of animal charcoal, wood-foot, oil of amber. 5. The incitantia, as opium, alcohol, vinegar. 6. Externally the fmoke of burnt feathers, oil of amber, volatile falt applied to the nofrils, blifters, finapifms.
II. Inverted motions of the ftomach are reclaimed by opium, alcohol, blifters, crude mercury, finapifms, camphor and opium externally, clyfters with afafoetida.
III. Inverted motions of the inteftinal lymphatics are reclaimed by mucilaginous diluents, and by inteftinal forbentia, as rhubarb, logwood, calcined harthorn, Armenian bole; and lafily by incitantia, as opium.
IV. Inverted motions of the urinary lymphatics arc reclaimed by cantharidcs, turpentinc, refin, the forbentia, and opium, with cal- warm-bath.
V. Inverted motions of the inteftinal canal are reclaimed by calomel, aloe, crude mercury, blifters, warm-bath, clyfters with afafotida, clyfters of iced water? or of fpring water further cooled by falt diffolved in water contained in an exterior veffel? Where there exifts an introfufception of the bowel in children, could the patient be held up for a time by the feet with his head downwards, or be laid with his body on an inclined plane with his head downwards, and crude mercury be injected as a clyfter to the quantity of two or three pounds?

\section*{Art. VII. TORPENTIA.}
I. Those things, which diminifh the exertion of the irritative motions, are termed torpentia.
1. As mucus, mucilage, water, bland oils, and whatever poffeffes lefs fiimulus than our ufual food. Diminution of heat, light, found, oxygen, and of all other ftimuli ; vencfection, naufea, and anxiety.

\author{
2. Thofe
}
2. Thofe things which chemically deftroy acrimony, as calcareous earth, foap, tin, alcalies, in cardialgia; or which prevent chemical acrimony, as acid of vitriol in cardialgia, which prevents the fermentation of the aliment in the ftomach, and its confequent acidity. Secondly, which deftroy worms, as calomel, iron filings or ruft of iron, in the round worms; or amalgama of quickfilver and tin, or tin in very large dofes, in the tapc-worms. Will ether in clyfters deftroy afcarides? Thirdly, by chemically deftroying extrancous bodies, as cauftic alcali, lime, mild alcali in the ftone. Fourthly, thofe things which lubricate the veffels, along which extraneous bodies flide, as oil in the fione in the urethra, and to expedite the expectoration of liardened mucus; or which leffen the friction of the contents in the inteftinal canal in dyfentery or aphtha, as caleined hartfhorn, clay, Armenian bole, chalk, bone-arhes. Fifthly, fuch things as foften or extend the cuticle over tumors, or phlegmons, as warm water, poultices, fomentations, or by confining the perfpirable matter on the part by cabbage-leaves, oil, fat, bee's-wax, 'plaftcrs, oiled filk, externally applied.

Thefe decreafe the matural heat and remove pains occafioned by excefs of irritative motions.

\section*{II. Observations on the Torpentia.}
I. As the torpentia confift of fuch materials as are lefs ftimulating than our ufual diet, it is exident, that where this clafs of medicines is ufed, fome regard muft be had to the ufual manner of living of the patient both in refpect to quantity and quality. Hence wounds in thofe, who have been accuftomed to the ufe of much wine, are very liable to mortify, unlefs the ufual potation of wine be allowed the patient. And in there habits I have feen a delirium in a fever cured almoft inmediately by wine; which was occafioned by the too mild regimen directed by the attendants. On the contrary in great inflammation, the fubduction of food, and of fpirituous drink, contributes much to the cure of the difeafe. As by thele means both the ftimulus from diftention of the veffels, as well as that from the acrimony of the fluids, is decreafed; but in both thefe refpects the previous habits of diet of the patients muft be attended to. Thus if tea be made ftronger, than the patient has ufually drunk it, it belongs to the article forbentia; if weaker, it belongs to the torpentia.
II. J. Water in a quantity greater than ufual diminifhes the action of the fyftem not only by diluting our fluids, and thence leffening their ftimulus,

Art. VII 2.3.1. TORPENTIA.
ftimulus, but by lubricating the folids, for not only parts of our folids have their flidng over each other facilitated by the interpofition of aqueous particles; but the particles of mucaginous or faccharine folutions flide eafier over each other by being mixed with a greater portion of water, and thence ftimulate the veffels lefs.

At the fame time it muft be obferved, that the particles of water themfelves, and of animal gluten diffolved in water, as the glue ufed by carpenters, flide eafier over each other by an additional quantity of the fluid matter of heat.

Thefe two fluids of heat and of water may be efteemed the univerfal folvents or lubricants in refpect to animal bodies, and thus facilitate the circulation, and the fecretion of the various glands. At the fame time it is poffible, that there two fluids may occafionally affume an aerial form, as in the cavity of the cheff, and by compreffing the lungs may caufe one kind of afthma, which is relieved by breathing colder air. An increafed quantity of heat by adding ftimulus to every part of the fyftem belongs to the article Incitantia.
III. 1. The application of cold to the fkin, which is only another expreffion for the diminution of the degree of heat we are accuftomed to, benumbs the cutaneous abforbents into inaction;
and by fympathy the urinary and inteftinal abforbents become alfo quiefeent. The fecerning veffels continuing their action fomewhat longer, from the warmth of the blood: Hence the ufual fecretions are poured into the bladder and inteftines, and no abforption is retaken from them. Hence fprinkling the fkin with cold water inereafes the quantity of urine, which is pale; and of ftool, which is fluid; thefe have erroneoufly been afcribed to increafed fecretion, or to obftructed perfpiration.

The thin difcharge from the noftrils of fome people in cold weather is owing to the torpid fate of the abforbent veffels of the membrana fchneideriana, which as above are benumbed fooner than thofe, which perform the fecretion of the mueus.

The quick anhelation, and palpitation of the heart, of thofe, who are immerfed in cold water, depends on the quiefeence of the external abforbent veffels and capillaries. Hence the cutaneous circulation is diminifhed; and by affociation an almolt univerfal torpor of the fyftem is induced; thence the heart becomes incapable to purh forwards its blood through all the inactive capillaries and glands; and as the terminating veffels of the pulmonary artery fuffer a fimilar inaction by affociation, the blood is with difficulty purhed through the lungs.

Some have imagined, that a fpafmodic con-
frriction of the finaller veffels took place, and have thus aecounted for their refiftance to the force of the hart. But there fecms no neceffity to introduce this imaginary fpafm; fince thofe, who are converfant in injecting bodies, find it neceffary firft to put them into warm water to take away the ftiffnefs of the cold dead veffels; which become inflexible like the other mufcles of dead animals, and prevent the injected fluid from paffing.
-Before the improved knowledge of chemiftry, and of natural philofophy, and of the laws of organic life, fome writers have fpoken of cold as a ftimulus to the fyftcm, infiead-of fpeaking of it as a diminution of the ftimulus of heat. But the immediate confequence of ftimulus is the exertion of the ftimulated fibres; now an increafed application of heat is followed by an inereafed action of the fibres expofed to it; but an increafed applieation of cold is followed by a decreafed action of the fibres expofed to it; as appears by the rednefs of our hands when warmed by the fire, and the palenefs of them, when they have been a while covered with fnow.
A painful fenfation fucceeds the defect as, well as the excefs of the fimulus of heat, as mentioned in Vol. I. Sect. IV. 5, and the voluntary exertions of the fubcutancous mufcles called fhuddering, are excited to relieve the pain oceafioned by the torpor of the fibres expofed to cold; and are voluntarily excited in fcreaming to relieve the pain occafioned by heat, which may have occafioned the error above mentioned.

Others have fpoken of a fedative quality of cold, which is certainly an unphilofophical expreffion; as a fedative power, if it has any diftinct meaning, fhould exprefs a power of diminifhing any unnatural or exceffive motions of the fyftem ; but the application of cold diminifhes the activity of the fibres in general, which may previounly be lefs than natural, as well as greater.

All the fame fymptoms oecur in the cold fits of intermittents; in thefe the coldnefs and palenefs of the fkin with thirft evince the diminution of cutaneous abforption; and the drynefs of ulcers, and fmall fecretion of urine, evince the torpor of the fecerning fyftem; and the anhelation, and coldnefs of the breath, fhew the terminations of the puimonary artery to be likewife affected with torpor.

After thefe veffels of the whole furface of the body botin abforbent and fecretory have been for a time torpid by the application of cold water; and all the internal fecerning and abforbent ones' lave been made torpid from their affociation with the external ; as foon as their ufual fimulus of warmth is renewed, they are thrown into more than their ufual energy of action; as the hands become hot and painful on approaching the fire after
after having been immerfed fome time in fnow. Hence the face becomes of a red colour in a cold day on turning from the wind, and the infenfible perfpiration increafed by repeatedly going into frofly air, but not continuing in it too long at a time.
2. When by the too great warmth of a room or of clothes the fecretion or perfpirable matter is much increafed, the ftrength of the patient is much exhaufted by this unneceffary exertion of the capillary fyftem, and thence of the whole fecerning and arterial fyftem by affociation. The diminution of external heat immediately induces a torpor or quiefcence of thefe unneceffary excrtions, and the patient inftantly feels himfelf ftrengthened, and exhilarated ; the animal power, which was thus wafted in vain, being now applied to more ufeful purpofes. Thus when the limbs on one fide are difabled by a ftroke of the pally, thofe of the other fide are perpetually in motion. And hence all people bear riding and other exercifes beft in cold weather.

Patients in fevers, where the fkin is hot, are immediately firengthencd by cold air; which is therefore of great ufe in fevers attended with debility and heat; but may perhaps be of temporary differvice, if too haftily applied in fome fituations of fevers atterded with internal topical inflammation, as in peripneumony or pleurify, where
the arterial ftrength is too great already, and the increafed action of the external capillaries being deftroyed by the cold, the action of the internal inflamed part may be fuddenly increafed, unlefs vencfection and other evacuations are applied at the fame time. Yet in moft cafes the application of cold is nevcrthelefs falutary, as by decrcafing the heat of the particlcs of blood in the cutaneous veffels, the ftimulus of them, and the diftention of the veffels becomes confiderably leffened. In external inflammations, as the fmallpox, and perhaps the gout and rheumatifm, the application of cold air muft be of great fervice by decreafing the action of the inflamed fkin, though the contrary is too frequently the practice. in thofe difeafes. It muft be obferved, that for all thefe purpofes the application of it fhould be continued a long time, otherwife an increafed exertion follows the temporary torpor, before the difeafe is deftroyed.

The topical application of cold to relieve in-. flammatory pains, or to deftroy the too great action of the veffels, may be ufed with great advantage; In local inflammations, as in the pleurify, or ophthalmia, or in local pains from the ftimulus of an extrancous body, as in gravel defcending along the urcter, the application of cold on or near the affected part may be ufed with falutary effect; as by prefing on the part a bladder full of cold water of ether on it; which may render the veffels torpid or inactive. But the application of cold to the whole fkin might increafe the action of the inflamed veffels by diminifhing that of the fkin and Iungs, and thus accumulating a greater quantity of fenforial power; and this efpecially if it was applied previous to evacuations by the lancet or by cathartics.

I am informed that an ingenious and eminent furgeon io Shropfhire, when he was himfelf affected with gravel in the uretcr, attended with exceffive and continued pain, found inftantaneous relief frequently in a day by applying on the painful part a bag of fnow or pounded ice, and fuffering it to diffolve. And in the Memoirs of the Medical Society of London, Vol. V. Mr. Parkinfon of Leicefter applies cold ingenioufly to burns, and to inflammations of the eyes, by covering the part with a bladder of the greatcfit tenuity, which is kept perpetually moiftened for many hours, (perhaps 24 or 36 ) by alcohol or highly. rectified fpirit of wine. In ophthalmia the eyelids were thus covered with thin bladder, and rectified fpirit of wine was applied by means of a fponge to the bladder for fome hours; which fucceeded, after faturnine lotions had been ufed in yain, and deftroyed the inflammation, as foon as two ounces of alcohol had been confumed. Perhaps ether by its quicker evaporation might be
\[
\text { YOL. II, } \quad \mathrm{Nn}_{\mathrm{n}} \quad \text { more }
\]
3. After immerfion in cold water or in cold air the whole fyftem becomes more excitable by the natural degree of ftimulus, as appears from the fubfequent glow on the fkin of people otherwife pale; and even by a degree of ftimulus lefs than natural, as appears by their becoming warm in a fhort time during their continuance in a bath, of about 80 degrees of heat, as in Buxton bath. See Sect. XII, 2. 1. XXXII. 3. 3.

This increafed exertion happens to the abforbent veffels more particularly, as they are firft and moft affected by thefe temporary diminutions of lieat; and hence like the medicines, which promote abforption, the cold bath contributes to ftrengthen the conflitution, that is to increafe its irritability ; for the difeafes attended with weaknefs, as nervous fevers and hyfteric difeafes, are Thewn in Section XXXII. 2. 1. to proceed from a want of irritability, not from an excels of it. Hence the digeftion is greater in frofty weather, and the quantity of perfpiration. For thefe purpofes the application of cold muft not be continued too long. For in riding a journey in cold weather, when the fcet are long kept too cold; the digeftion is impaired, and cardialgia produced.
4. If the diminution' of external heat be too great, produced too haftily, or continucd too long, the torpor of the fyftem cither becomes fo great, that the animal ccafcs to live ; or fo great an energy of motion or orgafin of the veffels fucceeds, as to produce fever or inflammation. This moft frequently happens after the body has been temporarily heated by exercifc, warm rooms, anger, or intemperance. Hence colds are produced in the cxternal air by refting after exercife, or by drinking cold water. See Clafs I. 2. 2. 1 .

Frequent cold immerfions harden or invigorate the conftitution, which they effect by habituating the body to bear a diminution of heat on its furface without being thrown into fuch cxtenfive torpor or quiefcence by the confent of the veffels of the fkin with the pulmonary and glandular fyftem; as thofe expcrience, who frequently ufe the cold bath. At firft they have great anhelation and palpitation of heart at their ingrefs into cold water; but by the habit. of a fcw weeks they are able to bear this diminution of heat with little or no inconvenience; for the power of volition has fome influence over the mufcles fubfervient to 'refpiration, and by its counter efforts gradually prevents the quick breathing, and diminifnes the affociations of the pulmonary veffels with the cutancous ones. And thus though the fame quantity of heat is fubducted from the flin, Nil 2 .
yet the torpor of the pulmonary veffels and internal glands does not follow. Heplee during cold immerfion tefs fenforial power is accumuJated, and, in confequence, lefs exertion of it fueceeds on emerging from the bath. Whenee fuch people are efteemed hardy, and bear the common variations of atmofpheric temperature without inconvenience. See Sect. XXXII. 3. 2.
IV. Vencfection has a juft title to be claffed amongf the torpentia in eafes of fever with arterial ftrength, known by the fulners and hardnefs of the pulfe. In thefe eafes the heat becomes lefs by its ufc, and all exuberant feeretions, as of bile or fweat, are diminifhed, and room is made in the blood-veffels for the abforption of mild fluids; and henee the abforption alfo of new veffels, or extravafated fluids, the produce of inflammation, is promoted. Hence venefection is properly elaffed amongft the forbentia, as like other evacuations it promotes general abforption, reftrains hrmorrhages, and cures thofe pains, which originate from the too great action of the fecerning veffels, or from the torpor of the abforbents. I have more than once been witnefs to the fudden removal of nervous head-aehs by venefection, though the patient was already exhaufted, pale, and feeble; and to its great ufe in convulfions and madnefs, whether the patient was ftrong or weak; which difeafes are the con-

Art. VII. 2.5, TORPENTIA.
fequence of nervous pains; and to its fopping long debilitating hæmorrhages from the uterus, when other means had been in vain effayed. In inflammatory pains, and inflammatory hæmorrhages, every one juftly applies to it, as the certain aind only cure.
V. When the circulation is carried on too violently, as in inflammatory fevers, thofe medicines, whieh invert the motions of fome parts of the fyftem, retard the motions of fome other parts, which are affociated with them. Hence fmall dofes of emetic tartar, and ipecaeuanha, and large dofes of nitre, by producing naufea debilitate and leffen the energy of the cireulation, and are thence ufeful in inflammatory difeafes. It muft be added, that if nitre be fivallowed in powder, or foon after it is diffolved, it contributes to leffen the circulation by the cold it generates, like ice-water, or the external application of cold air.
VI. The refpiration of air mixed with a greater proportion of azote than is found in the common atmofphere, or of air mixed with hydrogen, or with carbonic acid gas, fo that the quantity of oxygen might be lefs than ufual, would probably act in cales of inflammation with great advantage. In confumptions this might be moft conveniently and effectually applied, 'if a phthifi-
\[
\mathrm{N} \text { n } 3
\]
cal
cal patient could refide day and night in a porter or ale brewery, where great quantities of thofe liquors were perpetually fermenting in vats or open barrels; or in fome great manufactory of wines from raifins or from fugar.

Externally the application of carbonic acidgas to cancers and other ulcers inftead of atmofpheric air may prevent their enlargement, by preventing the union of oxygen with the matter, and thus producing a new contagious animal acid.

\section*{III. Catalogue of Torpentia.}
1. Venefection.' Artcriotomy.
2. Cold water, cold air, refpiration of air with lefs oxygen.
3. Vegetable mucilages.
a. Seeds - Barley, oats, rice, young peas, flax, cucumber, melon, \&c.
7. Gums.-Arabic, tragacanth, Senegal, of cherry-trees.
c. Roots-Turnip, potatoe, althea, orchis, fnow-drop.
d. Herbs - Spinach, brocoli, mercury.
4. Vegetable acids, lemon, orange, currants, gooleborries, apples, grape, \&c.
5. Animal mucus, harthorn jelly, ycal broth, chicken water, oil ? fat? cream?
Q. Mineral acids, of vitriol, nitre, fea-falt.
7. Silence,

Art. VII. 3.7. TORPENTIA.
\%. Silence, darknefs.
8. Invertentia in fmall dofes, nitre, emetic tartar, ipecacuanha given fo as to induce naufea.
9. Antacids.-Soap, tin, alcalies, earths.
10. Medicines preventive of fermentation, acid of vitriol.
11. Anthelminties.-Indian pink, tin, iron, cowhage, amalgama, fmoak of tobacco.
12. Lithontriptics, lixiy. faponarium, aqua calcis, fixable air.
13. Externally, warm bath, and poultices, oil, fat, wax, plafters, oiled filk, carbonic acid gas on cancers, and other ulcers.
\[
\begin{aligned}
& \text { • } \quad=\quad \text {. } \\
& \therefore \quad \\
& \text { - }
\end{aligned}
\]

\section*{INDEX}

\section*{A R T I C L E S.}
A.

Absorption, iv. 2. i.
.............cutaneous, mucous, cellular, iv. 2. \({ }^{2}\).
.... ........ of the veins, iv. 2. 4.
.............. of inflamed veffels, iv. 2. 4. 3.
............. of inteftines and liver, iv. 2. 5 .
............. of venereal ulcers, iv. 2. 7 .
............... not increafed by cold, iv. 2. 1.
............. increafed by opium after evacuation, ii.2.I.
............. by faline bath, iv. 2. 3.8.
c............ by abftinence from fluids, iv. 2. 3.9.

Acacia, iv. 3. 5. 2.
Acids aultere, iv. 2. 1. 2. iv. 3. I.
.... vegetable, fweet, vii. 3.4. iv. 2. 1. 2.
.... mineral, vii. 3.6 .
Acrid plants, iv. 2.4.
Agriculture, i. 2. 3. 7.
Agues, three kinds, iv. 2.3.2.iv. 2.5. iv. 2. 6. \&.
Air nourifhes, i. 2. 5 .
\(\ldots\) warm bath of, iv. 2. 3. 8.
Alcali vol. iii. 3.3.
Alcohol, ii. 2. I. v. 2. 4 .
Almond, bitter, ii. 3. 1.
Althæa, iii. 3. 3.3.
Allium, iii \(3 \cdot 3\).
Aloe, iii. 2. 5. iii. 2. 7. iii. \(3 \cdot 5 \cdot 5 \cdot\) vi. 2. 5 .
Alum, iii. 2. 1. iv. 2. I. iv. 2. 5. 2. iv. 3. 5. 3.
o..... to puxify water, i. 2. 4.2.

Amalgama in worms, vii. 2. 2.
Amonum zinziber, iii. 3. 1.
Amber, oil of, vi. 3. 4 .
Ammoniac gum, vi. 3. r.iii. 3. 3 .
.......... falt or fpirit, iii. 3. 3.
Anafarca, warm bath in, ii. 2. 2. iv, 2. 3. 8.
Anchovy, iii. 2. 1. iii. 3. 1. 4 .
Animal food, i. 2. 1. I.
Antimony prepared, iii. 3. 1. 5. iii. 2. 1. iv. 1. Io.
Anthemis nobilis, iv. 3..3.
......... pyrethrum, iii. 3.2.
Anxiety, v. 2. 4.
Apium, petrofelinum, iii. 3.4.4.
Apoplexy, iv. 2. II.
Ariftolochia ferpentaria, iii. 3. I.
Armenian bole, vi. 2. 3. vi. 3. 5. 3.
Arfenic in ague, iv. 2. 6. 8. iv. 3.6.
...... faturated folution of, iv. 2.6. 8.
....... in itch, iv. 2. 9.
....... how it acts, iv. 2. 6. 9.
...... . how to detect it, iv. 2. 6. 10.
Artemifia maritima, iv. 3. 3 .
abfynthium, iv. \(3 \cdot 3 \cdot\)
......... fantonicum, iv \(3 \cdot 3 \cdot\)
Artichoke-leaves, iv. 3 . 3 .
Afa foetida, ii. 3. vi. 3. I.
Afarum Europeum, v. 3-3.
Afcarides, vii. 1. 2. iii. 2. 9. 7.
Afparagus, iii. 3. 4. 4-
Aftragalus tragacantha, iii: \(3 \cdot 3 \cdot 3 \cdot\)
Atropa belladonna, ii. 3. I.
Azote, i. 2. 5.

\section*{B.}

Balfams diuretic, iii. 2. 4.
Bandages promote abforpsion, iv. 2. IO.
Bark, Peruvian, iv. 2. 2.
.... long ufed noxious, iv. 2. II.
Parley, iii. 3.3.3.
Bath, warm, ii. 2. 2. 1. iii. 3. 1.6. iii. 3.3.4. iii. 2. 3.3. faline, iv. 2. 3. 8.
..... of warm air, iv. 2. 3.8.
..... of Ateam, iv. 2. 3. 8.
.... cold, vii. 2.3 .

Bath, natritive, i. 2. 6. I.
Bensoin, iii 3. 3.
Bile of anmals, iii. 2.5.2.
dilute thate of, iv. 2. 6.
Blifters, how they act, iii. 2. 1. Io.
...... cure heart-burn, iii. 2. 1. Io.
. . . . . . ftop vomiting, vi. 2. 2.
\(\because . .\). . produce expectoration, iii, 2. 3. 2.
. . . . . . increafe perfpiration, iii. 2. 1. 10.
Blood, transfufion of, i. 2.6.2.
Bog-bean, iv. 3. 3.
Bole armenian, iv. 2. 5. 3 .
Bone-athes, iv. 3. 5. 3 .
Bowels, inflammation of, v. 2. 2. 2.
Bryoily, white, iii. 3.8.
........ as a blifter, iii. 2. 9.
Butter, i. 2. 3. 2.
Butter-milk, i. 2. 2. 2.

\section*{C.}

Cabbage-leaves, vii. I. 2.
Caicareous carth, i. 2. 4. 3.
Calomel, iii. 2. 5. vi. 2. 5 -
........ in enteritis, v. 2. 2. 2.
Camphor, iii. 3. I.
Caneila alba, iii. 3. I.
Cantharides, iii, 2. 6. iii. 2. 8. v. 2. 4. vi. 2. 4.
Capillary action increafed by tobacco, iv. 2. 3.7.
Capficum, iii. 3. I.
Carbonic acid gas, vii. 2. 6.
Cardamomum, iii. 3. I.
Caryophyllus aromat. iii. 3. r.
Cardamine, iv. 3. 4.
Caffia fiftul. iii. 3.5. I
…. fenna, iii. 3 . 5 . 5 .
Caftor, vi. 2.. 1 vi. 3 . 1.
Cathartics, mild, iii. 2. 5 .
......... . violent, v. 2. 2.
Ceruffa in ulcers, iv. 2. 9. iv. 2.7.
Chalk, iv. 3.5. 3 .
Chalybeates, iv: 3. 4. 2. iv. 3. 6.6.
Chalybeate powder, iv. 2. 6.6.
Chocfe, i. 2. 2. 3.
Cherries,

Cherries, hlack, ii. 2. 1. 8.
Chlorofis, iv. 2. 6.5.
Cicuta, ii. 3. I.
Cinchona, iv 2. 2.
Cinnamon, iii. 3.2.
Clay, iv. 3.5.3.
Cloves, iii. 3. 1. iii. 3. 3.
Cnicus acarna, v. 3., i.
Cocculus indicus, ii 3. I.
Cochlearia armoracia, iii. 3. S. iv. 3 . 4 .
- ......... hortenfis, iv. 3. 4.

Cold, continued application of, vii. 2. 3.
.... interrupted, vii. 2. 3. iii. 3. 1. 7.
.... exceffive, vii. 2. 3 .
..... firf affects lymphatics, vii. 2.3 .
.... produces rheum from the nofe, vii. 2 .
............. quick anhelation, vii. 2.3.
.... increafes digeftion, vii. 2. 3 .
Cold-fit eafier prevented than removed, ii. 2. I.
Colic from lead, v. 2. 2. 2.
Condiments, i. 2. 7.
Convolvulus fcammonium, v. 3. 2.
Convulfions, iv. 2. 8.
Cookery, i: 2. 3. 5 .
Copaiva balfam, iii. 3. 4. 3.
Cowhage, iii. 2. 7. vii. 3. II.
Crab-juice, iv. 2. 2.
Cream, i. 2. 3. 2. i. 2. 2. 2.
Cucumis colocynthis, v. 3.2.
Cynara fcolymus, iv. 3. 3 .
Cynogloffum, ii. 3. r.

\section*{D.}

Dandelion, iv. 3. 4.
Datura ftramonium, ii. 3. I.
Daucus fylveftris, iii. 3 4. 4.
Delphinium ftavifagria, ii. 3. 1.
Diabetes, iv. 25 .
…... warm bath in, vi. 2. 4 .
Diaphoretics, iii. 3. 1. iii. 2. 1. 2.
…........ beft in a morning, iii. 2. 1. 5.
Diarrhœa, vi. 2. 3.
Digeftion injured by cold, iii. 2. 1 .

Digeftion increafed by cold, vii. 2. 3 .
Digitalis, iv. 2. 3. 7. v. 2. 1. 2. tincture of, iv. 2. 3.7.
Dragon's blood, iv. 3. 5. 2.
Dropfy, iv, 2.3.4. iv. 2. 6.7. iv. 2. 3.7.

\section*{E.}

Ears, eruption behind, iv. 2. 9. 2.
Earth of bones, iv. 2. 5 .
..... of alum, vi. 2. 4.
\(\because\).. calcareous, iv. 2.5.3. vi. 2. 4. i. 2. 4. 3 .
Eggs, i. 2. 1. 4.
Egg-fhells diuretic, iii. 2. 4 .
Electricity, ii. 2 2. 2. iv. 2. 9.
Emetics, how they act, v. 2. 1.
Errhines mild, iii. 2. 9 .
........ in hydrocephalus, v. 2. 3. I.
....... . violent, v. 2. 3 .
\(\ldots . .\). in head-ach, v. 2. 3 . I.
Eryfipelas, iv. 2. 9.
Effential oils, ii. 2. 3 .
Ether, vitriolic, ii: 2. 3. iii. 3. I. vi. 3. I.
. . . . . in afcarides, vii. I. 2.
..... to purify, ii. I. 3 ..
Etiolation, i. 2. 3: \(4 \cdot\)
Euphorbium, v. 3. 3.
Exercife, iii. 3. 1. 6. ii. 2. 6.
Eyes inflamed, ii. 2. 2. 2. iv. 2. 3.
F.

Frmine, times of, i. 2.3.5. and ©.
Fear, v. 2.4.
Feathers, fmoke of, vi. 3. 6.
Fennel, iii. 3: 4. 4.
Ferula afafoetida, iii. 3. \(3 \cdot\)
Fifh, i. 2. 1. 2. i. 2. 1. 5 .
Flannel Mirt, ii. 2. 2. I.
Flefh of animals, i. 2. I.
Fluke-worm, iv. 2. 6.
Foxglove, iy. 2. 3. 7. v. 2. 1. v. 2. 4 .
\(\ldots\)...... tincture of, iv. 2. 3.7.
Friction, ii. 2. 5. iii. 3. 1. 6.

\section*{G.}

Galanthus nivalis, vii. 3. 3.
Galbanum, vi. 3. r.
Gall-ftoncs, iv. 2. 6 .
Galls of oak, iv. 3.5.
Garlic, iii. 3. 3.
Gentiana centaureum, iv. 3. 3.
….,... lutea, iv. 3. 3.
Gingér, iii. 3. r. iii. 3. 4.
Gonorrhcea, iv. 2. 2. iii. 2. 4.
Gout, iv. 2. II. 2.
Guaiacum, iii. 3. r.
Gum arabic, iii. 3:3. 3.
......tragacanth, iii. 3. 3. 3.
Glycyrrhiza glabra, iii. 3.3.3.
Gravel, v. 2. 4.4.

\section*{H.}

Harthorn, fpirit and falt of, iii. 3. 3. iii. 3. 1. vi. 3. A.0
.......... calcined, iv. 2. 5. vi. 2. 3.
Hæmorrhages, iv. 2. 4. 4. iv. 2. 6. 2.
Hæmatoxylon campechianum, iv. 3.5.2.
Hay, infurion of, i. 2. 3. 5.
Head-ach, fnuff in, v. 2. 3. r.
Heat, ii. 2. 2. 1. See Bath.
.....an univerfal folverit, vii. 2. 2.
Helenium, iii. 3.3.2.
Herpes, iv. 2. I. iv. 2. 9.
Herrings, red, iii. 3...I. 4 -
Honey, iii. 3. 3. 3. iii. 3. 5. 1.
Hop in beer, why noxious, iv. 2. 3.6. iv. 2. 11. 2.
Hordeum diftichon, iii. 3. 3: 3 .
Humulus lupulus, iv. 2. 3. iv. 2. I1.
Hydrargyrus vitriolatus, v. 2. 3.
Hy'teric difeafe, vi. 2. 1.
....... pains, vi. 2. I.
........ convulfions, vi. 2. r.
I.

Jalapium, iii. \(3 \cdot 5 \cdot 5 \cdot\)
Japan earth, iv. 3. 5. 2.

Jaundice, iv. 2. 6. 3.
Ileus, vi. 2. 5.
Incitantia, ii.
Intermittents. See Agues.
Inverted motions, vi. 2. I. in hyiterie difeafe, vi. 2. I.
............... of the ftomach, vi. 2. 2.
...................... . inteftinal canal, vi. 2.5.
................. of lymphatics, vi. 2.3.
Inula helenium, iii. 3. 3.2.
Ipecacuanha, v. 2. 1.
Iron, ruft of, iv. 3. 6.
Irritability prevented, iv. 2.3.3.
Itch, iv. 2. 1. 3 .
Inflammation of the bowels, v. 2.2.2.

\section*{L.}

Laurus' camphora, iii. 3. I.
. ..... cinnamomum, iii. 3. I.
...... faffafras, iii. 3. I.
Lead, iv. 3. 6.
..... colic from, v. 2. 2. 2.
......fugar of, iv. 2. 9.
Leeks, iii. 3. 3. I.
Legs, ulcers of, iv. 2. 10.
..... fwelled, iv. 2. 3. S.
Lemon-juice, iv. 2. I. iv. 2. 2.
Leontodon taraxacum, iv. 3. 4 .
Life fhortened by great ftimulus, i. I.
Lime, i. 2. 4. 3 .
Liquorice, iii. 3. 3.3.
Liver inflamed, iv. 2. 6.
Logwood, iv. 3.5.2.
Lymphatics, inverted motions of, v. 2. I.

> M.

Manganefe, ii. 2. 4.
Magnefia alba, iii. 3. 5. 3.
Malt, i. \(2.3 \cdot 5 \cdot\)
Manna, iii. 3. 5 .
Marfh-mallows, iii. 3.3.3.
Marjoram, iii. 3. 9.

Marum, iii. 3.9.
Maftich, iii. 3. 2. iii. 3. 3.
Menianthes trifoliata, Av 3. 3.
Menifpermum cocculus, ii. 3. r.
Menftruation promoted, iv.:2. 6. 6.
...........: repreffed, iv. 2."6.6.
Mercury, iii. 3. 2. vi. 2. 2.
........ preparations of, iv. 3. 7. iv. 2. 7. iv. 2. 9...
......... injected as a clyfter, vi. 3. 5 .
Metallic falts, iv. 2. 6.
Milk, i. 2. 2.
Mimofa nilotica, iii. 3. 3.3.
...... catechu, iv. 3. 5.2.
Mint, vi. 3. 3.
Mortification, iv. 2. 9 .
Mucilage, vegetable, vii. \(3 \cdot 3\).
Mucus, animal, vii. 3.5 .
Mufhrooms, i. 2. i. 2.
Murk, vi. 2. I. vi. 3. I.
Muftard, iv. 3.4. See Sinapifm.

\section*{N.}

Naufea, in fevers, vii. 2. 5 .
Neutral falts diuretic, why, iii. 2. 4.
....... increafe fome coughs, iii. 2. 4
\(\ldots .\). increafe heat of urine, iii. 2.4 .
Nicotiana tabacum, iii. 3. 9. ii. 3. I.
Nitre, iii. 3. 4. v. 2. 4.
Nutmeg, iii. 2. i.
Nutrientia, i.

\section*{0.}

Oil of almonds, iii. 3. 5. 4.
... in cream, i. 2. 3. 2.
... of amber, vi. 2. 1.
... expreffed, externally, iii. 2. 3 .
\(\therefore\) effential, ii. 2. 3. iii. 3.2.
Oiled filk, vii. 3. I 3 .
Oleum animale, vi. 2, I. vi. 3.4.
©..... ricini, iii, 3.54.
Onions iii. 3-3.

Opium, ii. 2. r. 2. iv. 1.2.
...... in nervous pains, ii. 2. 1. 5.
...... in inflammatory pains, ii. Y. r. 6.
\(\ldots .\). increafes all fecretions and abforptions, ii.
2. I. I.
abforption afteparactuation, iv. 2. 8. 2. ii. 2. 1. 3.
....... ftops fweats, iv. 2. I. 2.
. .: :... intoxicates, ii. 2. I. I.
Oranges, their peel, iv. 3 - 3 -
Orchis, vii. 3. \(3 \cdot\)
Oxygen gas, ii. 2. 4. i. 2. 5. iii. 2. II. iv. I. 4. .......... produces and heals ulcers, iv. 2.7.

> P.

Pains, periodic, cured by opium, ii. 2. i.
Papin's digefter, i. 2. 3. 5.
Papaver fomniferum, ii. 3. x. iv. 3.2. Sce Opium
Pareira brava, iii. 3.4.4.
Parfley, iii. 3. 4 -
Paffions, ii. 2. 5 .
Pafturage, i. 2. \(3 \cdot 7 \cdot\)
Pepper, iii. 3. I.
Peripneumony, iv. 2. 8. 2.
Perfpiration in a morning, iii. 2. r.
.......... not ân excrement, iii. 2. I.
Peru, balfam of, iii. 3n 5. 4.
Petechix, iv. 2. 4. 2.
Pimento, iii. 3. I.
Piper indicum, iii. 3: I.
Piftacia lentifcus, iii. 3.2.
Pix liquida, iii. 3.2.
Pholphorus, iii. 2. 6.
Plafter-handage, iv. 2. 10.
Pleurify, iv. 2. 8. 2.
Polygala feneka, iii. 3. 3. 2.
Poppy. See Papaver.
Portland's powder noxious, why, iv. 2. II 2.
Potatoe-bread, i. 2. 3.4.
Potentilla, iv. 3 . 5 .
Powder of iron, iv. 2. 6. 6.
Prunes, iii. 3.5.I.
YOL: II. O O

Prunus domeftica, iii. 3.5.I.
..... fpinofa, iv. 3. I.
..... lauro-cerafus, ii. 3. I.
Pulegium, vi. \(3 \cdot 3\).
Pulfe, intermittent, relieved by arfenic, iv. 2. 6
Pyrethrum, iii. 3. 2.
Pyrus malus, vii.
..... cydonia, iv. 3. I.

\section*{Q.}

Quaffin, iv. 2. 2.
Quince, iv. 3. I.
Cuinquefolium, iv. 3 . 5 .
R.

Ratifia, why deftructive, ii. 2. I.
Reaction, iv. r. 10.
Refin diuretic, iii. 2. 4. vi. 2. 4 .
Rhamnus catharticus, v. 3: 2 .
Rheumatifm, iv. 2. 4. 5. iv. 2. 10. 2.
Rheum palmatum. -See Rhubarb.
Rhubarb, iii. 2. 1. iv. 2. 5. I. iii. 3.5.5.
......... caufes conftipation, why, iii. 2. I. I.
Rice, vii.
Rofes, iv. 3.5 .
Rot in fheep, iv. 2. 6.

\section*{S.}

Sagapenum, vi. 3. 1.
Sago, vii. 3 .
Salivation not neceffary, iv. 2. \%.
. . . . . . . . hyfteric, v. 2. 3.
Salt, common, unwholefome, iii. I. iz.
.... imuriatic, iii. 3. r.
.... in clyfters, iii. 2.7.
Salts, why diuretic, iii. 2. 4.
.... neutral, iii. 3. 5. 3. iii. 2. 4.
.... improper in coughs and gonorrhœe, iii. 2. 4 .
Salt-fifh and falt meat increafe perfpiration, iii, 2. I.
Saffafras, iii. 3. I.
Scammony, v. 2. 2.

Scarcity, times of, i. 2. 3. 5. and 6.
Scilla, maritima, v. 2. 2. iv: 2. 3. iii. 3. 3. v. 2. 3.
Scorbutic legs, iv. 2. Io.
Scrofulous tumours, ii. 2. 4. iv. 2. 9.
Sea-water, iii. 3.5.3.
Secernentia, iii.
Secretion of the bladder, iii. 2. 6.
......... of the rectum, iii. 2. 7 .
....... of the fkin, iii. 2. 8.
Seneka, iii. 3.3.2.
Senna, iii, 3. 5: 5:
Serpentaria verginiana, iii. 3. I.
Sialagogues, iii. 2. 2. v. 2. 3:
Simarouba, iv. 3. \(5 \cdot\)
Sinapi, iv. 3.4.
Sinapifms, vi. 2. 2. iii. 2. 8.
Sifymbrium nafturtium, iv. 3. 4 .
Sloes, iv. 2. 2.
Snuff in head-ach, v. 2. 3. I.
. . . . fee errhines.
Snuffs of candles, vi. 3. 4 .
Society, i. 2. 3. 7.
Soot, vi. 3. 4 .
Sorbentia, various kinds, iv. 2. I.
Spafmodic doctrine exploderl, vii. 2. 3.
Spermaceti, iii. 3. 3. 3 .
Spice, noxious, iii. I. 12.
Spirit of wine noxious, ii. 2. I.
Sponge, burnt, vi. 3.4.
Squill. See Scilla.
Starch, i. 2. 3. I.
..... from poifonous roots, i. 2. 3. 4.
Steam, bath of, iv. 2. 3. 8.
Steel, iv. 2. 6. 1.
.... forwards and repreffes menftruation, iv. 2. 6. G.
.... powder, iv. 2.6.6,
Stizolobium filiqua hirfuta, iii. 2.7: vii. 3. II.
Strychnos nux vomica, ii. 3. 1.
Sublimate of mercury, iv. 2. 7. iv. 2.9.
Sugar nuurifhing, i. 2. 3. I. and 5. iii. 3. 3. 3 .
,... formed after the death of the plant, i. 2.3.3.5.
… aperient, iii. 3.5.I.,
Sulphur, iii. 3.5.4.
\(\mathrm{O}_{0} \mathrm{O}_{1}\)
Sweats

Sweats in a morning, iii. 2. I. I.
..... on waking, iii. 2. 1. 1.
. . . . . cold, v. 2. 5.
. . . . . flopped by opium, iv. 2. 1. 2.

\section*{T:}

Tænia, vermes. See Worms.
Tamarinds. iii. 3. 5. I.
Taney, tanacetum, iv. 3. 3 .
Tar, iii. 3. 3.
Tartar, crystals of, iii. 3.5-1. Class i. 2. 3. I 3.
...... vitriolate, iii. 3.5.3.
....... emetic, v. 2. 1. v.2.2.
Tea, vii. 2. I.
Tears, iii. 2. 10.
Teftaceous powders, iv. 2. 2.
Tetradynamia, plants of, iv. 24 :
Tincture of digitalis, iv. 2.3.7.
Tinea, herpes, iv. 2. 1. 4.
Tobacco, ii. 3. 1. iii. 3. 9. iv. 2. 3. 8.
....... injures digeftion, iii. 2. 2. 3.
Tolu balkan, iii. \(3 \cdot 3\).
Tonics, iv. 1. 10.
Tormentilla erecta, iv. 3.5 .
Torpentia, vii.
Tragacanth gum, iii. 3. 3.3.
Turpentine, vi. 2. 4 .
........... spirit of, iii. 2.6.
Turpeth mineral, v. 2. 3.
Tuffilago farfara, iii. \(3 \cdot 3 \cdot 3 \cdot\)

> U.

Ulcers cured by bandage, iv. 2. 10. 2.
..... fcrofulous, iv. 2. 9.
..... of the mouth, iv. 2. 2.
..... cured by absorption, ii. 2. 1. 4. iv. 2. 3. 5. iv. 2. 7 .

Ova urfi, iv. 3.5.
V.

Valerian, vi. 3. 3.
Vegetable acids, iv. 2. 1.

Vegetable food, i. 2. 1. 2.
Venereal ulcers, iv. 2. 7.
Venefection, vii 2 .4. iv. 2.8
- . . . . . . . . diminifhes fecretions, vii. 2. 4.
........... . increafes abforgtions, vii. 2. 4.
Veratrum, v. 3. 2.
Vibices. iv. 2.4. 3
Vinegar, iv. 2. r. 9. iv. 3. 4. 3. ii. 2. 1.9.
Vitriol blue in agues, iv 2 . 6 . iv. 2. 2.
. ......... in ulcers, iv. 2. 9 .
..... white, iv. 3.6. v. 2. I.
..... acid of, iv. 2. I.
..... in fiveats, iv. I. x.
..... . in finall-pox, iv. I. I.
Volatile falt, vi. s. 6.
Vomiting, v. 2. 2.
......... ftopped by mercury, vi. 2. 2.'
Vomits, iv. 2. 3.7.
W.

Warm-bath, ii. 2. 2. I.
. . . . . . . . . . faline, iv. 2. 3. 8.
........... in diabetes, vi. 2. 4 .
Water, i. 2. 4.
...... . dilutes and lubricates, vii. 2. 2.
. ..... cold, produces fweats, iii. 2. I.
....... iced, in ileus, vi. 2. 5.
. . . . . . creffes, iv. 3. 4 .
Whey of milk, iii. 3. 5.2. i. 2.2.2.
Willow, bark, iv. 2. 3. 2.
Wine, ii. 3. I.
Worms, vii. 1. 2. iii. 2. 7. iv. 2.6. 4. ....... in fheep, iv. 2. 6. 4.
Wounds cured by bandage, iv. 2. 10. 2.
Z.

Zinc, vitriol of, v. 3. I.

\section*{DIRECTIONS TO THE BINDER.}
1. Pleafe to place the Flate confifting of one red fpot, at Sect. III. 1.
2. - Confifting of one black fpot, at Sect. III. 3. 3.
3. - Confifting of five concentric coloured circles, at Sect. III. 3. 6.
4. - Confifting of one yellow circle furrounded by one blue' one, at Sect. XL. 4. 2.
5. - Confifting of one yellow circle and two blue ones, at Sect. XL. 10. 3.
6. - Confifting of the word BANKS in blue on a yellow ground, at Sect. XL. 10. 5.

T. Benfley, Printer, Bolt-Court, Fiect-Areet, Londote
```


[^0]: YOL.II。

[^1]: VOL.II.

[^2]: - YOK.II.

 A a
 X. Miscel.

[^3]: YOL, If.

